Scallop (Queen) Dredge on Peat and Clay Exposures

Introduction

The Assessing Welsh Fisheries Activities Project is a structured approach to determine the impacts from current and potential fishing activities, from licensed and registered commercial fishing vessels, on the features of Marine Protected Areas.

<table>
<thead>
<tr>
<th>1. Gear and Feature</th>
<th>Scallop (Queen) Dredge on Peat and Clay Exposures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Risk Level</td>
<td>Purple (High risk)</td>
</tr>
<tr>
<td>3. Description of Feature</td>
<td>Peat and Clay Exposures are comprised of several relevant biotopes (see annex 1 for full biotope descriptions). LR.HLR.FR.RPid refers to littoral peat and is characterised by the presence of a variety of boring piddocks. LR.MLR.MusF.MytilPid refers to littoral firm clay characterised by small clumps of Mytilus edulis, Elminius modestus and Littorina littorea on the surface. This habitat includes littoral and sublittoral examples of peat and clay exposures, both of which are soft enough to allow them to be bored by a variety of piddocks, particularly Pholas dactylus, Barnea candida and Barnea parva. Peat and clay exposures with either existing or historical evidence of piddock activity are unusual communities of limited extent, adding to the biodiversity interest where they occur. These unique and fragile habitats are irreplaceable, arising from former lake bed sediments and ancient forested peatland (or ‘submerged forests’). Depending on erosion at the site, both clay and peat can occur together or independently of each other. Where peat is present on the shore or in shallow waters, the surface may be characterised by algal mats consisting of the red seaweed Ceramium spp. and the green seaweeds Ulva lactuca and Ulva intestinalis. However, sand scour can limit the cover provided by these seaweeds. The crabs Carcinus maenas and Cancer pagurus often</td>
</tr>
</tbody>
</table>
occur in crevices in the peat, with hydroids in any small pools. On clay, seaweed cover is generally sparse with species such as *Mastocarpus stellatus* and *Ceramium* spp. attached to loose-lying pebbles or shells. On the surface of the clay, there may be small clumps of the mussel *Mytilus edulis*, together with barnacles and the winkle *Littorina littorea*. The polychaete worms *Polydora* spp. and *Hediste diversicolor* can sometimes be present within the clay. When the piddocks have died, their holes provide a micro-habitat for species such as small crabs and anemones such as *Cereus pedunculatus* and *Aulactinia verrucosa*.

It is known that peat and clay beds exist sublittorally, but the extent and maximum depth of this habitat is not known. There is little information on the communities associated with subtidal examples of peat and clay exposures, but the flora and fauna is likely to be different to those found associated with intertidal examples. It is possible that subtidal exposures of this habitat support communities, which may or may not include piddocks. Surveys of a subtidal peat and clay exposure in the Menai Strait recorded the piddock *Zirfaea crispata*, a sparse cover of hydroids (e.g. *Sertularia cupressina*, *Hydrallmania falcata*, *Tubularia indivisa* and *Nemertesia antennina*), and crabs – *Cancer pagurus*, *Necora puber* and *Carcinus meanas*.

Depending on its location, this habitat can experience periodic inundation and emergence from sediments. This habitat encompasses examples of peat and clay exposures with either existing or historical piddock activity (i.e. dead shells in piddock holes). This habitat also encompasses occurrences of peat and clay exposures with no evidence of either past or present piddock activity, but which have the potential for this community to develop on the basis of environmental conditions and presence of similar beds locally (BRIG, 2008).

Following storms when the peat habitat may be covered in sand there may be a reduction in the amount of algal species.
Many of the characterizing species that are present in the biotope are suspension/filter feeders, so productivity of the biotope would probably be largely dependent on detrital input (Tillin & Budd, 2008).

Outcrops of fossilized peat in the littoral may project above sand level by >15cm and form extensive platforms up to 100m in length across the shore. Fossilized peat tends to be firm and relatively erosion resistant (Murphy, 1981).

Many of the species associated with this biotope are commonly found on various shore types and are either mobile or rapid colonisers (Tillin & Budd, 2008).

4. Description of Gear

Queen scallops (*Aequipecten opercularis*) are predominantly targeted using towed fishing gear, either in the form of skid dredges (modified Newhaven dredges) or modified otter trawls.

Queen scallops are more active swimmers than king scallops and do not recess into the seabed (Brand, 2006). Dredges and otter trawls take advantage of the natural propensity of queen scallops to swim up into the water column when disturbed, rather than relying on extraction of the scallops from the sediment as is the case for Newhaven dredges (Beukers-Stewart & Beukers-Stewart, 2009).

A modified Newhaven dredge can be about 1.95m wide, often with a higher front opening. Instead of metal teeth it can have a rubber lip or sometimes the front part of the dredge consists of a metal grid mounted on four rubber rollers, two on each side of the grid. Alternatively, the tooth bar is replaced with a tickler chain. The modified dredge is normally fitted with skis or skids on either side designed to run along the top of the seabed. The dredge has a traditional metal belly bag with a mesh size of 60mm to retain the queen scallops (Humphrey, 2009).

Traditional toothed king scallop dredges are occasionally used to target queen scallops, these dredges are approximately 0.76m wide, with a chain mail belly bag and a 60mm mesh. Each dredge bar
usually has 17 metal teeth of around 6cm in length on it (Hinz *et al*, 2009). The amount of dredges per side of the vessel can vary between 1 and 16 depending on the size and power of the vessel.

The choice of skid dredges or otter trawls is largely governed by the nature of the substrate on different fishing grounds, with skid dredges being more effective in rough/coarse sediment areas and trawls in sandy/muddy areas (*Vause et al*, 2007).

5. Assessment of Impact Pathways:

1. Damage to a designated habitat feature (including through direct physical impact, pollution, changes in thermal regime, hydrodynamics, light etc).

2. Damage to a designated habitat feature via removal of, or other detrimental impact on, typical species.

The three types of queen scallop fishing gear described above are all bottom contacting gear and as such impose a similar effect upon the seabed. The assessment below incorporates all three gears and will be referred to collectively as scallop (queen) dredge gear. Any differences in gear interactions will also be described below.

1. Demersal mobile fishing gear reduces habitat complexity by: removing emergent epifauna, smoothing sedimentary bedforms, and removing taxa that produce structure (*Auster & Langton*, 1999). Ways in which gear affects the seabed can be classified as: scraping and ploughing; sediment resuspension; and physical destruction, removal, or scattering of non-target benthos (*Jones*, 1992).

The Newhaven dredges and trawls employed in this fishery are also known to cause considerable damage and disturbance to benthic communities and associated nursery habitat (*Eleftheriou & Robertson*, 1992; *Jennings et al*, 2001; *Kaiser et al*, 2006). The action of the scallop (queen) dredge gear, like the impacts from king scallop dredges, will affect the peat and clay exposures by coming into direct contact with the surface layers, causing disturbance and erosion of the peat and clay exposure.

Scallop (queen) dredge gear have penetration depths of 1-15cm in sand and 1-35cm in mud (*Eigaard et al*, 2016; *Paschen et al*, 2000).

Kaiser et al (2002) suggest that deep water habitats, such as mud are more adversely affected by trawling activities due to the fact that they are often relatively undisturbed by wave turbulence and
meteorological impacts. This would also apply to sheltered peat and clay habitats. This theory is supported by research conducted by Hiddink et al (2006) into impacts of bottom towed trawl activity to disturbance of benthic biomass.

In conclusion the habitat and underlying peat and/or clay may be degraded by a single pass of a scallop (queen) dredge gear. Continued impacts from scallop (queen) dredge gear will erode and remove more of the habitat, if the peat and/or clay is eventually removed entirely, recovery will not occur.

2. Demersal mobile fishing gear reduces habitat complexity by: removing emergent epifauna, smoothing sedimentary bedforms, and removing taxa that produce structure (Auster & Langton, 1999).

Demersal trawls cause direct mortality to non-target organisms through impact on the seabed (Bergman & van Santbrink, 2000).

Where mussels are present on the peat and/or clay exposures, a single pass of the gear will penetrate the substrate and the mussel matrix and cause ecological damage to mussel beds and non-target fauna (Hall et al, 2008).

Piddocks (Pholadidae), a bivalve mollusc which burrows in the sediment live within the peat and clay habitat. Old or vacated burrows create microhabitats for other species such as crabs and anemones, increasing the local biodiversity (Wright, 2015). Paddock shells are thin and easily broken.

Vulnerability of biota is partially dependant on the consolidation of sediment in which the community lives (Collie et al, 2000). Where peat and clay exposures are consolidated sedimentary forms, it is suggested that the Pholadidae and the biota that frequent their burrows once empty are less resilient to disturbance by gear.

Collie et al (2000) undertook an analysis of published research into fishing activity impacts on the seabed, based on 39 research projects
undertaken previously. They found an average of 46% decrease in total number of species individuals within the study sites that were disturbed with bottom towed gear

In conclusion scallop (queen) dredge gear on peat and clay exposures is likely to cause degradation of the feature and removal of typical species. Where part of the feature remains, recolonization could occur rapidly. If the feature is removed, no typical species can recolonise.

6. MPAs where feature exists

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmarthen Bay and Estuaries SAC</td>
<td>Mid-Flandrian peat is present intertidally southwest of Amroth, Maross Sands, Pendine, both intertidally and subtidally in the Gwendraeth, at Whiteford Point, Broughton Bay and in the Burry Inlet at Llanridian Sands, at Port Eynon Bay and along the River Loughor (CCW, 2009a).</td>
</tr>
<tr>
<td>Menai Strait and Conwy Bay SAC</td>
<td>An unusual subtidal reef habitat of clay deposits occurs subtidally near Gallows Point just west of Beaumaris and another outcrop has been recorded between Beaumaris and Penmon (CCW, 2009b). Intertidal peat and clay habitats can be found at various locations throughout the Menai Strait and also at Red Wharf Bay and near Moelfre. Intertidal peat and clay habitats are also be found between Conwy Morfa and West Shore at Llandudno.</td>
</tr>
<tr>
<td>Lleyn Peninsula and the Sarnau SAC</td>
<td>Intertidal exposures of peat and clay can be found within the SAC near Llanbedrog, the mouth of the river Artro, north of Barmouth, between Tywyn and Aberdovey and North of Borth (CCW, 2009c).</td>
</tr>
<tr>
<td>Pembrokeshire Marine SAC</td>
<td>Intertidal exposure mapped with medium confidence at Castlemartin.</td>
</tr>
<tr>
<td>Dee Estuary</td>
<td>There are two records within this SAC, one near Gronant and the other in the Dee estuary on the Wirral coast.</td>
</tr>
</tbody>
</table>
7. Conclusion

This habitat and its associated species are fragile and easily damaged by one pass of a scallop (queen) dredge. The irreplaceable nature of the peat and clay exposures means that, if erosion occurs to the habitat substrate by repeated passes of the scallop (queen) dredge gear, then recovery will not occur. Although the species associated with these habitats could be initially lost, recovery may be possible if some of the feature remained.

8. References

Annex 1
Biotope descriptions (version 15.03) (JNCC - http://jncc.defra.gov.uk/marine/biotopes/hierarchy.aspx)

LR.HLR.FR.RPid - Ceramium sp. and piddocks on eulittoral fossilised peat
Outcrops of fossilised peat in the eulittoral are soft enough to allow a variety of piddocks such as Barnea candia and Petricola pholadiformis to bore into them. The surface of the peat can be characterised by a dense algal mat, predominantly the red seaweed Ceramium spp. and with the green seaweeds Ulva lactuca and Enteromorpha intestinalis. Damp areas in the algal mat are covered by aggregations of the polychaetes Lanice conchilega and Polydora sp. The crabs Carcinus maenas and Cancer pagurus occur in crevices in the peat. Small pools on the peat may contain hydroids, such as Obelia longissima and Kirchenpaueria pinnata, the brown alga Dictyota dichotoma and the crustacean Crangon crangon.

LR.MLR.MusF.MytPid - Mytilus edulis and piddocks on eulittoral firm clay
Clay outcrops in the mid to lower eulittoral which are bored by a variety of piddocks including Pholas dactylus, Barnea candia and Petricola pholadiformis. The surface of the clay is characterised by small clumps of the mussel Mytilus edulis, the barnacle Elminius modestus and the winkler Littorina littorea. Seaweeds are generally sparse on the clay, although small patches of the red seaweeds Mastocarpus stellatus, Halurus flosculosus and Ceramium spp. can occur, usually attached to loose-lying cobble or mussel shells. Also the green seaweeds Enteromorpha spp. and Ulva lactuca may be present. The sand mason Lanice conchilega can sometimes be present in the clay, while the shore crab Carcinus maenas is present as well.

CR.MCR.SfR – Soft rock communities
This biotope complex occurs on moderately wave-exposed, circalittoral soft bedrock subject to moderately strong tidal streams. As this complex is found in highly turbid water conditions, the circalittoral zone may begin at the low water mark, due to poor light penetration. This complex is dominated by the piddock Pholas dactylus. Other species typical of this complex include the polychaete Polydora and Bispira volutacornis, the sponges Cliona celata and Suberites ficus, the bryozoan Flustra foliacea, Alcyonium digitatum, the starfish Asterias rubens, the mussel Mytilus edulis and the crab Necora puber and Cancer pagurus. Foliose red algae may also be present. Three biotopes have been identified within this complex: Pid, Pol and Hia.

CR.MCR.SfR.Pid – Piddocks with a sparse associated fauna in sublittoral very soft chalk or clay
This biotope occurs on circalittoral soft rock, such as soft chalk or clay, most often in moderately exposed tide-swept conditions. As soft chalk and firm clay are often too soft for sessile filter-feeding animals to attach and thrive in large numbers, an extremely impoverished epifauna results on upward-facing surfaces, although vertical faces may be somewhat richer. The rock is sufficiently soft to be bored by bivalves. Species vary with location, but Pholas dactylus is the most widespread borer and may be abundant. Other species present may include the sponges Dysidea fragilis and Suberites carnosus and the polychaete Bispira volutacornis. Foliose red algae may be present on the harder, more stable areas of rock. Mobile fauna often include the crabs Necora puber and Cancer pagurus.