
Natural Resources Wales

Final Report
About Natural Resources Wales

We look after Wales’ environment so that it can look after nature, people and the economy.

Our air, land, water, wildlife, plants and soil – our natural resources - provide us with our basic needs, including food, energy, health and enjoyment.

When cared for in the right way, they can help us to reduce flooding, improve air quality and provide materials for construction. They also provide a home for some rare and beautiful wildlife and iconic landscapes we can enjoy and which boost the economy.

But they are coming under increasing pressure – from climate change, from a growing population and the need for energy production. We aim to find better solutions to these challenges and create a more successful, healthy and resilient Wales.
Evidence at Natural Resources Wales

Natural Resources Wales is an evidence based organisation. We seek to ensure that our strategy, decisions, operations and advice to Welsh Government and others are underpinned by sound and quality-assured evidence. We recognise that it is critically important to have a good understanding of our changing environment.

We will realise this vision by:

- Maintaining and developing the technical specialist skills of our staff;
- Securing our data and information;
- Having a well resourced proactive programme of evidence work;
- Continuing to review and add to our evidence to ensure it is fit for the challenges facing us; and
- Communicating our evidence in an open and transparent way.
The State of Natural Resources Report (SoNaRR) Report Contents

This document is one of eight chapters of the State of Natural Resources Report.

Chapter 1 Introduction to the State of Natural Resources Report (SoNaRR): An assessment of sustainable management of natural resources
Chapter 2 Understanding drivers of change in natural resource use
Chapter 3 Summary of extent, condition and trends of natural resources and ecosystems in Wales
Chapter 4 Resilient Ecosystems
Chapter 5 Well-being in Wales
Chapter 6 Identifying Unsustainable Management
Chapter 7 Towards sustainable management of natural resources
Chapter 8 Assessment of the sustainable management of natural resources
Annex Technical Annex for Chapter 3
Annex Technical Annex for Chapter 7 (Part 1)
Annex Technical Annex for Chapter 7 (Part 2)
Annex Method for assigning confidence to evidence presented
Annex Record of confidence assessments
Annex Acronyms and Glossary of terms

All of the SoNaRR documents can be downloaded from the NRW website: www.naturalresources.wales/sonarr.

Recommended citation for this report:

Copyrights

All graphs, maps, tables and other images are © Natural Resources Wales unless otherwise stated.

All maps containing the Wales boundary:
© Crown Copyright and database right 2016. Ordnance Survey licence number 100019741.

All maps containing marine aspects:
© British Crown and OceanWise Ltd, 2016. All rights reserved. License No. EK001-20120402. Not to be used for Navigation.
Contents

3. Summary of Extent, Condition and Trends of Natural Resources and Ecosystems in Wales ... 8
 Introduction .. 8

PART A – NATURAL RESOURCES ... 10
3.1. Animals, Plants and other organisms .. 10
3.2. Air Quality ... 16
3.3. Water resources and hydrological processes .. 20
3.4. Soils .. 24
3.5. Geodiversity, geological features and processes (including minerals) 29

PART B – WELSH ECOSYSTEMS ... 32
 Overview .. 32
 Habitats of principle importance ... 34
 European and UK protected sites ... 35
3.6. Mountains, moors and heaths ... 36
3.7. Semi-natural grasslands .. 41
3.8. Enclosed farmland .. 44
3.9. Woodland .. 48
3.10. Freshwater ... 55
3.11. Urban Environments ... 61
3.12. Coastal margins ... 65
3.13. Marine .. 68

PART C – PRESENTING INTEGRATED EVIDENCE AROUND PLACE 78
3.14. Landscape information in Wales ... 78
3.15. Assessing extent, condition and trends at an area scale 80

References for Chapter 3 .. 82
List of Figures

Figure 3.1 Overview of condition of Habitat and Bird Directive species features on SACs and SPAs. Number of features in assessment shown in brackets. [H] 12

Figure 3.2 Assessment of the state of some of the Welsh priority species at broad taxonomic group level. [H] ... 13

Figure 3.3 Wales PM$_{10}$ emissions by source sector. [H] .. 17

Figure 3.4 PM$_{2.5}$ concentrations in Wales. [H] .. 17

Figure 3.5 Nitrogen dioxide (NO$_2$) concentrations in Wales. [H] 17

Figure 3.6 Wales nitrogen oxides (NOx) emissions by source sector. [H] 18

Figure 3.7 Number of days background ozone concentration was over target value in 2014. [M] ... 18

Figure 3.8 Wales ammonia (NH$_3$) emissions by source sector. [H] 19

Figure 3.9 Water resource availability in Wales in 2014 (percentage of time) . [H] 22

Figure 3.10 Map of peak spring tidal flow for Welsh waters reproduced from: Atlas of UK Marine Renewable Energy Resources (2008). [H] .. 23

Figure 3.12 ‘Soilscape’, the National Soil Map of Wales (UK Soil Observatory (UKSO), 2016). [H] ... 25

Figure 3.13 Distribution of soil carbon in Wales, shown as carbon density (t/ha): a) depth 0-30 cm; b) depth 30-100 cm; c) depth 0-100 cm .. 26

Figure 3.14 Contaminated Land sites in Wales identified under the Part 2A regime of the Environmental Protection Act 1990 (determinations reported by local authority). [L] ... 27

Figure 3.15 Glastir Monitoring and Evaluation Programme (GMEP) data for topsoil: (a) Long term trends in carbon concentration (1978 to 2013); (b) Long term trends in topsoil pH; (c) Long term trends in topsoil phosphorus availability (Olsen-P); (d) Trend in topsoil mesofauna abundance. Solid blue line = Countryside Survey data (CS data); Dashed blue line = GMEP 2013 Wider Wales Survey. [M] 28

Figure 3.16 Welsh Geodiversity Sites [H]. .. 30

Figure 3.17 Potential unconventional gas resources in Wales. [H] 31

Figure 3.18 Summary of the representation of semi-natural habitats and modified land-cover types in Wales. [M] .. 32

Figure 3.19 Percentage of Special Area of Conservation (SAC) habitat features in favourable and unfavourable condition. Number of habitat features in assessment shown in brackets. [H] .. 35

Figure 3.20 Breakdown of the component habitats of mountain, moorland and heath in Wales. All numbers are in hectares (ha). [M] ... 37

Figure 3.21 Distribution map of (left) unimproved neutral grassland in Wales compared with that of (right) improved grassland. The unimproved neutral grassland includes only stands confirmed by thorough floristic survey (from Blackstock et al. 2010). .. 42
Figure 3.22 New planting in Wales (hectares, ha), by woodland type (broadleaves and conifers), 1971-2015. [H] ... 51

Figure 3.23 Distribution of Phytophthora ramorum in Wales in 2016. [H] 52

Figure 3.24 Modelled Suitability change in Sitka spruce and Sessile oak based on predicted climate change by 2080, based on UK Climate Change Projections 2002 (UKCIP02) predictions (High scenario). [M] .. 53

Figure 3.25 Water Framework Directive classification, overall status 2015: surface waters. [H] .. 56

Figure 3.26 Water Framework Directive classification, overall status 2015: groundwaters. [H] ... 57

Figure 3.27 Water Framework Directive classification, element status, 2015: rivers. [H] .. 57

Figure 3.28 Water Framework Directive classification, element status, 2015: lakes. [H] .. 58

Figure 3.29 Hectares (ha) of accessible natural greenspace per 1,000 population by local authority (ha), July 2012. [M] ... 62

Figure 3.30 Distribution of land use classes across Wales’ urban areas (2013). [M] 62

Figure 3.31 Distribution of tree canopy cover across Wales’ urban land use classes. [M] ... 63

Figure 3.32 Cardiff ward by ward (Lower Super Output Area, LSOA) tree canopy cover distribution – Communities First Cluster Areas (most deprived areas in Cardiff) highlighted. [M] ... 63

Figure 3.33 Noise map for major roads, major railways and roads, railways and industry in agglomerations, 2012. [M] ... 64

Figure 3.34. Annex I SAC feature condition (% of total area ha) derived from Article 17 reporting. Total hectares of each habitat in assessment shown in brackets. [H]. 67

Figure 3.35 Water Framework Directive classifications for estuarine and coastal elements, 2015. [H] .. 70

Figure 3.36 Percentage of designated bathing waters complying with the original Bathing Water Directive 1990 – 2014. [H] ... 70

Figure 3.37 Bathing Water Directive classification 2015 (revised Directive). [H] 71

Figure 3.38 Marine (intertidal and subtidal) habitats listed under Annex I of the Habitats Directive. The 12 nautical mile limit of Welsh territorial waters is shown. [L-H] .. 73

List of Tables

Table 3.1 Mineral production for 2014 [H]. ... 30

Table 3.2 What is included in each broad habitat.. 33

Table 3.3 Summary of the representation of mountain, moorland and heathland habitats within the SSSI series based on data up until 2010; data are rounded to the
nearest 10 ha [M]. Data in the final column are based on Allen (2004) and in most cases relate to a subset of the SSSI sites notified for each feature [L].

Table 3.4 Summary of the conservation status of Habitats and Species Directive Annex I habitats associated with mountain, moorland and heath [H]. * Indicates Habitats Directive priority status. Key: □ = stable; ▼ = decreasing less than 1% per year; ▼▼ = decreasing more than 1% per year; ▼▼▼ = decreasing rate unknown; ▲ = increasing; - = unknown.

Table 3.5 Extent of different semi-natural grasslands in Wales. Extent figures from Blackstock et al (2010) except * Stevens et al (2010) and JNCC (2013). Note that ‘upland marshy grassland’ (29,204 ha) is included in the ‘mountain, moorland and heath’ section.

Table 3.6 Summary of lowland grassland SSSI feature condition assessments (from Allen, 2004). * Includes calaminarian grassland.

Table 3.7 Recorded losses of semi-natural grasslands.

Table 3.8 Classification of woodland in Wales, by type, including area in hectares (ha). [H]

Table 3.9 Forecast of timber availability in Wales (thousand m³ overbark standing – 000s m³ obs), 2017-2061. S = softwood, H = hardwood. [H]

Table 3.10 Summary of the representation of lowland terrestrial wetland habitats within the SSSI series * in most cases relates to a subset of the SSSI sites notified for each feature.

Table 3.11 Status of Habitats Directive Annex I Freshwater Habitats in Wales Key: □ = stable; ▼ = decreasing; ▲ = increasing; - = no information; greyed arrows = low. S = short-term trend; L = long-term trend.

Table 3.12 Status of Habitats Directive Annex I Wetlands Habitats in Wales. Key: □ = stable; ▼ = decreasing less than 1% per year; ▼▼ = decreasing more than 1% per year; ▼▼▼ = decreasing rate unknown; ▲ = increasing; - = unknown.

Table 3.13 Short and long term trends in range and extent of Annex I coastal margin habitats in Wales. All information from 2013 Article 17 reporting. Key: □ = stable; ▼ = decreasing; ▲ = increasing; - = no information. [H]. * Vegetated Sea Cliffs of the Atlantic to Baltic Coasts are composed of the following habitats; Coastal grassland, Coastal heath and Vertical sea cliffs.¹ Short term trend = in the last 12 years. ² Long term trend = in the last 24 years.

List of Boxes

Box 1 How we chose the evidence and identified evidence gaps
3. Summary of Extent, Condition and Trends of Natural Resources and Ecosystems in Wales

Introduction

In this Chapter we present a summary of the available evidence on the extent, condition and trends of natural resources and ecosystems in Wales. This is our assessment of biodiversity as required under section 6 of the Act.

Part A presents a synthesis of the evidence we have analysed on the state of natural resources. This is presented as follows:

1. Animals, plants and other organisms
2. Air
3. Water as a resource or hydrological system. Part B deals with freshwater and marine ecosystems
4. Soil
5. Geological features and processes

Other climatic resources, such as flow resources (anything that replenishes itself without human intervention) and physiological features have not been separated out as they form part of all of the above.

Part B presents a synthesis of the evidence we have analysed on the extent, condition and trends occurring within ecosystems or broad habitats. This is presented as follows:

6. Mountains, moors and heaths (including upland marshy grassland, lowland heaths and fridd)
7. Semi-natural grassland
8. Enclosed Farmland (primarily intensively managed grasslands and arable, but also including orchards and field boundaries)
9. Woodland (including semi-natural woodland and coniferous plantations);
10. Freshwater (including groundwater, rivers and streams, lakes and standing water, and lowland fens and bogs)
11. Urban environments (including previously developed land)
12. Coastal margins (including saltmarsh, sand dunes and seacliffs)
13. Marine (including coastal and estuarine, intertidal, inshore/subtidal)

Table 3.2 in Part B explains what is included in each grouping, building on the NEA approach. Wherever possible we have tried to consider extent, condition and trends for each broad habitat and sub-habitats. We have also highlighted evidence gaps. Each section focuses on the key messages which have come out of a process of synthesising and analysing a broad spectrum of evidence. Evidence sources are presented as references as it is not possible to include all of the detail here. A technical Annex provides further information from which we have drawn out the key messages (See SoNaRR: Technical Annex for Chapter 3). Box 1 provides information about the methodology used in this chapter. The key messages and supporting evidence have a confidence level assigned to them – Low [L], Medium
or High \([H] \). In some cases, L-H is used to show that confidence is variable (normally associated with maps using several different data sources). The full methodology used to assign confidence can be found in SoNaRR: Annex methodology for assigning confidence to evidence presented.

Part C briefly explores ways in which evidence on the extent, condition and trends can be brought together in a place-based context. This part draws upon landscape information and evidence as well as the three natural resource ‘area trials’ that NRW ran between 2014 and 2016. This information begins to draw together the techniques that will be required to look at the interface between natural resources and human influences. In turn this can inform the development of area statements and the planning and management of land and sea at a national, regional and local scale.

Box 1 How we chose the evidence and identified evidence gaps

Method Statement
This first SoNaRR was developed by NRW with input from NRW specialists and external experts. The methodology used to collate evidence follows the "Expert Consultation" methodology outlined in Tables 1 and 2 of Pullin et al. (2016). Future SoNaRRs will draw on the other methodologies outlined by Pullin et al. to ensure the most appropriate methodology is adopted in the longer term.

The specialists in NRW carried out a concise time-limited exercise to review the literature available and known to them based on their current knowledge as specialists. A full method statement for this exercise is provided in the Technical Annex for Chapter 3.

The NRW specialists pulled out the main key messages that provided a good representation of the current extent, condition and trends of Wales’ natural resources based on the best available evidence. The key messages in this chapter are generally already well-known and widely published but part of the purpose of this exercise was to collate them to show the whole picture. Graphs, maps, tables and photographs were used where appropriate to illustrate the key messages.

Baseline
Chapter 3 is the evidence base of the state of Wales’ natural resources. It is recognised that whilst the key messages have associated references, it is not always clear to which year the evidence relates and therefore what the baseline is. We intend that future documents will show the specific date range of the evidence so wherever possible baselines are set and available for comparison.

Evidence Gaps
The evidence gaps highlighted in Chapter 3 are not a comprehensive list, are not all focussed at the same level, and do not necessarily reflect the priorities between subject areas. They are specific to the natural resources and broad habitats being discussed in the relevant section. In future, they will be reviewed, set out at similar levels and prioritised according to the outcomes of the National Natural Resources Policy (NNRP).
PART A – NATURAL RESOURCES

3.1. Animals, Plants and other organisms

(See section 3.1 of the Technical Annex for Chapter 3 for more information)

KEY MESSAGES

Extent:
- Wales has a wide representation of species across a broad range of taxonomic groups with estimates varying from 25,000 to 50,000 different species of animals, plants and other organisms [H].
- There are 20 Special Protection Areas (SPAs) for internationally important populations of birds and 92 Special Areas of Conservation (SACs) for other threatened species and natural habitats [H].
- 562 of the total 1,016 Sites of Special Scientific Interest (SSSI) (as of 2010) have individually qualifying species and 54 have species assemblages which qualify [H]. Many of the same species are also found on sites that qualify for their habitat.
- The list of species and habitats of principal importance in Wales (the interim Section 7 list) includes 557 species [H].

Condition:
- The condition of SAC and SPA species features on sites in Wales, as reported in 2013, remains mostly unfavourable (55%), with the exception of birds and mammals of which 86% and 68% were in favourable condition, respectively [H].
- Between 2002 and 2008, fewer than half of the species on the interim Section 7 list were considered to be stable or increasing [H].
- Wales (along with the UK as a whole) did not meet the 2010 international and national biodiversity targets [H].

Trend:
- Trends of extent and population for terrestrial, freshwater and marine species vary enormously within taxonomic groups; with some species increasing and some decreasing. For instance, both increases and decreases can be seen in birds, bats and many pollinator species (e.g. bees, butterflies) whilst for many species we do not have sufficient data on which to base any conclusions [H].
- There has been a marked reduction in the abundance of salmon in recent years, particularly in the southern regions of the species’ range which is linked to increased mortality at sea. Although stocks in many of our industrial rivers have improved in the last 30 years, most stocks in Wales are severely challenged [H].
- All species are directly affected by changes in habitat quantity and quality. These changes are directly related to changes in the intensity of management regimes. Fragmentation and eutrophication create particular problems for many species (see sections 3.6-3.13) [H].
- The CCRA17 Evidence Report has identified risks to species and habitats due to their inability to respond to changing climatic conditions. There may also be opportunities from new species colonisations.
KEY MESSAGES

Conversely, native wildlife may be increasingly at risk from pests, pathogens and invasive species. There are also risks from change in the frequency and/or magnitude of extreme weather and wildfire events. Climate change is influencing the expansion or contraction of some species’ ranges and populations, and the increasing frequency of extreme climatic events, predicted in many climate change scenarios, may have serious implications\(^1\)\[\text{H}\].

Evidence gaps:

- Despite the long history of observing and recording animals and plants in the UK and Wales, there are many significant gaps in the breadth and quality of distribution, condition and trend data.
- Understanding the ecological interactions and dependencies between many species, their habitats and the management of habitat is crucial, but is a particular area where data is lacking.
- Although we have some very specific information for some Invasive Non-Native Species (INNS) in Wales, it is patchy, particularly on a Wales-wide scale.

Extent:

The suite of species in Wales reflects its position on a small island on the edge of the Atlantic Ocean subject to influences from the European land mass with a generally temperate climate. Many species reach the northern or southern limits of their distribution here, and the generally mild conditions also attract summer and winter migrants from many parts of the western Palearctic.

The diversity of habitats across Wales, from sea level to over 1000 m, has been moulded by a long history of land management changes, and has resulted in a wide representation of species across a broad range of taxonomic groups with estimates varying from 25,000 to 50,000 species. Many rare species rely on small fragments of scarce habitats; particularly important are the calcareous fens and raised bogs alongside the more extensive dune systems and ancient oak woodland which characterise Welsh habitat cover.

Where SSSIs are designated for their habitats, these act as extra protection for species and vice versa.

Condition:

In a report such as this it would be impossible to provide information on the extent, status and condition of even a fraction of our fauna and flora (even if the information were available), but some examples where we have good long term and reliable datasets are included in Annex 1 section 1.

The protected site network in Wales includes the Natura 2000 sites of Special Areas of Conservation (SACs) and Special Protection Areas (SPAs) and RAMSAR sites in addition to the national designations of National Nature Reserves, Marine...
Conservation Zones and Sites of Special Scientific Interest (SSSI). All of these designations provide protection for a wide variety of species and the habitats they depend on.

The 2013 reports on the Annexes of the Habitats Directive (Article 17 report) and Birds Directive (Article 12 report) summarise the UK status and trends of the selected habitats and species and are important evidence resources\(^{19, 20}\). A summary of the Welsh results for species in Figure 3.1. For many of the freshwater species, Water Framework Directive monitoring information in addition to SAC, SPA and wider countryside data were used.

![Figure 3.1 Overview of condition of Habitat and Bird Directive species features on SACs and SPAs\(^{5}\). Number of features in assessment shown in brackets. [H]](image)

From monitoring data collected for species features on Natura 2000 sites, we can report that the overall condition of SAC and SPA species features on these sites in Wales, as reported in 2013, was mostly unfavourable (55%) with the exception of birds and mammals of which 86% and 68% were in favourable condition respectively\(^{5}\)(Figure 3.1).

In Wales, the interim Section 7 list of the Environment (Wales) Act has 557 species and 55 habitats of principle importance. These were originally selected for the Section 42 list of the Natural Environment and Rural Communities Act 2006 for prioritised action from the UK Biodiversity Action Plan using criteria based on the
level of threat they face, the level of responsibility in Wales for their populations and whether remedial action could be taken to improve their status. The list includes species as diverse as slow-worm (*Anguis fragilis*), hornet robber fly (*Asilus crabroniformis*) and long-snouted seahorse (*Hippocampus guttulatus*).

The State of Nature Wales report\(^3\) includes an assessment of the status of some of the interim Section 7 species in comparison to their condition at the time of the last Biodiversity Action Plan report in 2008 (Figure 3.2).

- **Of the 104 invertebrate species listed as priorities, 67 were assessed. 21% of these were declining**, the outlook was improving for 25%, and the remaining 54% showed little change in their status.
- **83 vertebrate species appear on the list of priority species and we assessed 78 of them. 37% of these were declining** and the outlook was improving for 21%. The remaining 42% showed little change in their status.
- **Of the 87 fungi and lichens listed as priorities, 55 were assessed. 29% of these were declining**, the outlook was improving for 27% and the remaining 44% showed little change in their status.
- **52 bryophytes feature on the priority species list and we assessed 49 of them. 47% of these were declining**, the outlook was improving for 24% and the remaining 29% showed little change in their status.

Figure 3.2 Assessment of the state of some of the Welsh priority species at broad taxonomic group level\(^3\). [H]

Trend:

The extent, condition and trends of terrestrial species in Wales are influenced primarily by habitat management and by climate change.

Habitat management directly influences plant community composition, amounts of bare substrate, shading and vegetation structure. Shading due to scrub encroachment, following changes in grazing regime, can be as damaging for butterflies\(^11\) and many other species groups as overgrazing or agricultural improvement. These effects are compounded by direct habitat loss which leads to fragmentation of suitable habitat types or conditions and the increasing influence of nutrient enrichment which leads to changes in plant communities and patterns of growth. [H]

The latest studies (2015) suggest that climate change may pose more of a threat to UK species than had been previously realised\(^11\) [H]. A study of the impact of the 1995 drought on butterfly abundance\(^21, 22\) showed that some widespread species, including large skipper (*Ochlodes sylvanus*) and green-veined white (*Pieris napi*),
were particularly drought-sensitive. The impact of extreme weather events is also relevant to many invertebrates and birds on a yearly basis.

Climate change impacts such as acidification, sea temperature rises and extreme weather events have the potential to affect marine species through a number of factors including prey population dynamics, reproduction and distribution17, 23.

Evidence gaps:

Despite the long history of observing and recording animals and plants in the UK, there are many significant gaps in the breadth and quality of distribution, condition and trend data for our fauna and flora. The very specialised nature of identifying some groups poses a challenge and this contributes to the often sporadic nature of records. Monitoring data for many of the species listed in the Habitats Directive and Birds Directive outside SACs and SPAs, and for many of the priority species across Wales, is not available. Additionally, the ecological interactions and requirements between many species, their habitats and habitat management are crucial to our understanding, but this is an area where data is lacking.

Our evidence base is constantly improving through the efforts of dedicated volunteer recorders and citizen scientists. The records created by these individuals are collated by organisations such as Local Environmental Record Centres, Recording Groups and Schemes and Societies and many of them are made publically available through the NBN Gateway web portal (soon to be replaced with the NBN Atlas and Atlas of Living Wales).

Limited data makes assessing the extent, condition and trends of commercially targeted marine fish and shellfish species at a Welsh level challenging. Commercially targeted fin fish, elasmobranchs and shellfish species are managed through a combination of European, UK and Welsh legislation with a number of Welsh initiatives in place to contribute valuable information on the sustainability of marine fisheries activities and their locations in Welsh waters.

Although we have some very specific information for some Invasive Non-Native Species (INNS) in Wales, it is patchy. We need more comprehensive distribution data and also information on the likely rate or risk of INNS spread so that we can develop better knowledge about anticipated economic and social impacts and support more effective INNS management actions. The GB Non Native Species Secretariat's24 Great Britain level risk assessments for new INNS will help, but we need more data, tools or techniques, and research to fill the Wales-level information gaps on INNS that we currently have.

KEY EVIDENCE SOURCES

- NBN-Gateway (to be replaced by the NBN Atlas)25
- Local Environmental Records Centres (LERCs)26
- UK Habitat Directive Reports (Article 17)19
- UK Birds Directive Reports (Article 12)20
- Wales Marine Evidence Report27
- Wales Marine Planning Portal28
KEY EVIDENCE SOURCES

- UK Marine Strategy Part One: Initial Assessment and Good Environmental Status\(^{29}\)
- ICES Stock Condition Assessments\(^{30}\)
- Marine Management Organisation Fisheries Statistics\(^{31}\)
- CEFAS Fisheries Reports\(^{32}\)
- Marine Environmental Data and Information Network (MEDIN)\(^{33}\)
- Pollinator indicator\(^{34}\)
- State of Nature report 2016\(^{3}\)
- Glastir Monitoring and Evaluation Programme (GMEP)\(^{13}\)
- Non-native species secretariat website\(^{24}\)
3.2. Air Quality

(See section 3.2 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition and Trend:</td>
</tr>
<tr>
<td>• Targets for nitrogen dioxide, particulate matter, nickel and polycyclic aromatic hydrocarbons are being breached in Wales35 thereby posing a threat to human health and the natural environment36 [H].</td>
</tr>
<tr>
<td>• The decline in heavy industry alongside regulation has resulted in a reduction in emissions of some pollutants, such as particulate matter (PM) Figure 3.3 and Figure 3.4). Other sources, that are subject to less or no regulatory control, such as transport, agriculture and domestic heating, have become more of a concern 37 [H].</td>
</tr>
<tr>
<td>• Particulate matter (PM) and nitrogen dioxide concentrations (Figure 3.3, Figure 3.4, Figure 3.5 and Figure 3.6) in urban areas and adjacent to major roads are an issue for health38 [H].</td>
</tr>
<tr>
<td>• Peak ground level ozone concentrations have declined over the past 30 years. Over the same period, background concentrations have been steadily increasing across northern Europe by about 0.2ppb annually38, leading to damage to some plant species (Figure 3.7) [M].</td>
</tr>
<tr>
<td>• Ammonia remains an issue (Figure 3.8), both as a local air pollutant and as a contributor to the formation of secondary particulate matter. Concentrations of secondary particulate matter have risen in Wales in recent years, largely due to changes in agricultural practice37 [H].</td>
</tr>
<tr>
<td>• 90% of semi-natural nitrogen sensitive Welsh habitats are subject to nitrogen deposition in excess of critical load limits39 [H].</td>
</tr>
<tr>
<td>• Since controls on air pollution were introduced in the 1980s there has been a significant recovery in surface water quality from the effects of acidification40 [H].</td>
</tr>
</tbody>
</table>

| Evidence gaps: |
| • The data on which we have based our evidence are collected for specific legislative drivers such as the Air Quality Directive and Environmental Noise Directive. The monitoring and modelling for these purposes is not required to cover the whole of Wales. Therefore, there are likely to be areas that are not being assessed where both air quality and noise are having adverse impacts. Pollution from agricultural sources such as ammonia is not specifically measured. |
| • Monitoring of PM\textsubscript{2.5} in air has been limited to date and there is insufficient data to accurately assess the status of this fraction of particulate matter in Wales. |
Figure 3.3 Wales PM$_{10}$ emissions by source sector37. [H]

Figure 3.4 PM$_{2.5}$ concentrations in Wales41. [H]

Figure 3.5 Nitrogen dioxide (NO$_{2}$) concentrations in Wales41. [H]
Figure 3.6 Wales nitrogen oxides (NOx) emissions by source sector37. [H]

Figure 3.7 Number of days background ozone concentration was over target value in 201441. [M]
Figure 3.8 Wales ammonia (NH₃) emissions by source sector[^7].

KEY EVIDENCE SOURCES
- National Air Emissions Inventory[^42]
- Air Quality in Wales[^35]
- Defra UK-Air[^43]
3.3. Water resources and hydrological processes

(See section 3.3 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshwater Extent:</td>
</tr>
<tr>
<td>• The landscape and geology of Wales provide few natural stores of water either in aquifers or soils[^44].</td>
</tr>
<tr>
<td>• This means that rainfall generally travels quickly to our rivers and streams and little is held back to slowly pass through the ground to maintain river flows (base flows) in drier periods. Rivers rise rapidly when it rains and drop quickly afterwards. As a consequence, the flows in all Welsh rivers can change particularly quickly leading to flood conditions, but also as importantly, to very low flows whenever we have extended periods of dry weather[^44].</td>
</tr>
<tr>
<td>• The lack of natural water storage in Welsh catchments means that reservoirs are useful to ensure reliable sources of water during drier periods[^44].</td>
</tr>
<tr>
<td>• Although Wales is perceived to be water rich, we are facing challenges. For example, in 7% of our water bodies water is only reliable for people to abstract 30% of the time for new consumptive abstractions. In approximately 60% of water bodies, water is reliable for people to abstract for at least 95% of the time for new consumptive abstractions[^45, 46] (Figure 3.9) [H].</td>
</tr>
<tr>
<td>• Changes to hydraulic conditions are identified as having an impact or likely to have an impact on 45 of 112 (40%) Natura 2000 protected sites[^47]. Reduced flows caused by abstraction present risks to migratory fish and wider biodiversity. Water Framework Directive (WFD) investigations have identified 29 (3%) water bodies that have failed to meet objectives because of changes to flows and water levels[^48] [H].</td>
</tr>
</tbody>
</table>

| **Trend:** |
| • Climate change is predicted to affect the amount and distribution of rainfall; this has an impact on flows and water levels, drought and flood events[^49] [H]. Work carried out in 2002 showed that by 2050 river flows in winter may rise by 10-15% but in the summer and early autumn could reduce by over 50% and as much as 80% in some places[^44] [M]. Droughts and flood events may become more common[^49] [H]. |
| • Climate change may affect groundwater recharge. By 2025 it is likely that groundwater recharge will decrease, resulting in decreased dry weather river flows and a general lowering of groundwater levels. This may have impacts on base-flow to rivers and wetlands in dry periods and affects small domestic and agricultural water supplies[^44] [H]. The CCRA17 Evidence Report[^49] has identified risks to aquifers and habitats from salt water intrusion. |

| **Evidence gaps:** |
| • Understanding of the impacts of land use change and climate change on river flows and water levels needs to be improved. |
KEY MESSAGES

Marine & coastal Extent:
- Hydrological processes such as tides, waves and water temperature are influenced primarily by large scale oceanographic processes but with the potential for small to medium-scale effects from anthropogenic influences50. [H]

Trend:
- Climate change effects are the main broad scale driver of change for coastal and marine hydrological processes51, 52 [H] and include changes to tidal levels due to sea-level rise [H] and increased storminess [M] leading to increases in wave energy. The CCRA17 Evidence Report has identified risks to offshore infrastructure from storms and high waves.
- Climate change is also predicted to increase sea surface temperatures, to affect salinity to a lesser degree and may increasingly affect mixing and stratification over time51, 52 [H].
- Changes to hydrological processes from either climate change or, at a smaller scale, from infrastructure development in the marine and coastal environment can affect seabed and coastal geomorphology and associated habitats and species53, 54, 55, 56 [H].
- Hydrological processes provide an important resource for wave, tidal stream and tidal range renewable energy57 (Figure 3.10). [H]

Evidence gaps:
- There is insufficient understanding of hydrological processes (waves in particular) for the nearshore environment which is partly because of the lack of monitoring.
- Limited understanding of shoreline response (erosion and accretion) to changes in hydrological conditions (e.g. sea level rise and wave activity from storms).
Figure 3.9 Water resource availability in Wales in 2014 (percentage of time)45, 46. [H]
Figure 3.11 Maps of wave height for Welsh waters reproduced from: Atlas of UK Marine Renewable Energy Resources (2008)57. [H]

KEY EVIDENCE SOURCES

- River Basin Management Plans58
- The case for change - current and future water availability59
- LIFE Natura 2000 programme47
- Water Strategy for Wales60
- Water Resources Strategy for Wales44
- Climate Change Risk Assessment for Wales49
- UK Climate Projections 2009 (UKCP09)61
- Wales’ Marine Evidence Report50
- Charting Progress 2: The State of UK Seas62
- Marine Climate Change Impacts Annual Report Card52
- UK Climate Projections Science Report: Marine and Coastal Projections51
- Atlas of UK Marine Renewable Energy Resources57
- Shoreline Management Plans53, 54, 55, 56
3.4. Soils

(See section 3.4 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>• Soils are diverse; over 400 different soil types found in Wales[^63] are contributing to, reflecting, and supporting our rich geodiversity and biodiversity, landscapes and land uses (Figure 3.12) [H].</td>
</tr>
<tr>
<td>• Welsh soils contain 410 million tonnes of carbon[^64] (Figure 3.13) [M].</td>
</tr>
<tr>
<td>Condition:</td>
</tr>
<tr>
<td>• The soils of best quality and most productive agricultural land are a scarce and finite resource in Wales; accounting for less than 7% of land area[^65] [H].</td>
</tr>
<tr>
<td>• Soil quality has deteriorated across all habitats apart from woodlands where there has been some improvement[^66] [M].</td>
</tr>
<tr>
<td>• The severity and spatial extent of soil erosion has not been directly quantified in Wales[^67]. Around 10-15% of grassland fields in England and Wales are thought to be affected by severe soil compaction and 50-60% are in moderate condition[^68] [L]. No data exists on compaction in grassland and arable land across Wales specifically.</td>
</tr>
<tr>
<td>• Only 30% of the Welsh peat soil area is considered to be in ‘good condition’[^69] [M]. It is estimated that 74% of acid sensitive habitat soils receive acidic deposition in excess of their capacity to neutralize air pollution[^70] [H].</td>
</tr>
<tr>
<td>• Remediation has been completed at 97 of the 111 Contaminated Land sites identified in Wales (Figure 3.14) [H], but around 9,330 potentially contaminated sites have yet to be investigated[^71] [L]. There is no evidence that has collated land use change statistics at sufficient resolution to identify the extent of soil sealing in Wales[^67].</td>
</tr>
<tr>
<td>Trend:</td>
</tr>
<tr>
<td>• Topsoil carbon concentrations are generally stable and there is ongoing recovery from soil acidification[^72] [M]. Although a significant decline in soil phosphorus levels has been seen for Improved Land[^72] [H], it remains above the optimum levels in many (44%) agricultural fields[^73] [M]. Soil invertebrate (mesofauna) numbers indicate no overall trend[^72] [L]. There has been little or no decline in elevated levels of soil contaminants from industry and transport[^74] [M] (Figure 3.15).</td>
</tr>
<tr>
<td>• The CCRA17 Evidence Report[^75] has identified risks to soils from increased seasonal aridity and wetness. Climate change related risks are threatening the many services that soils provide, notably those that relate to soil biota, soil organic matter, and soil erosion and compaction[^76] [M].</td>
</tr>
<tr>
<td>Evidence Gaps:</td>
</tr>
<tr>
<td>• Compared to air and water, for example, there is a general lack of information on the current state and trends of soils in Wales and their vulnerability and resilience to land use, land management and changing weather patterns and climate[^67, 77].</td>
</tr>
</tbody>
</table>

[^63]: www.naturalresourceswales.gov.uk
[^64]: www.naturalresourceswales.gov.uk
[^65]: www.naturalresourceswales.gov.uk
[^66]: www.naturalresourceswales.gov.uk
[^67]: www.naturalresourceswales.gov.uk
[^68]: www.naturalresourceswales.gov.uk
[^69]: www.naturalresourceswales.gov.uk
[^70]: www.naturalresourceswales.gov.uk
[^71]: www.naturalresourceswales.gov.uk
[^72]: www.naturalresourceswales.gov.uk
[^73]: www.naturalresourceswales.gov.uk
[^74]: www.naturalresourceswales.gov.uk
[^75]: www.naturalresourceswales.gov.uk
[^76]: www.naturalresourceswales.gov.uk
[^77]: www.naturalresourceswales.gov.uk
Figure 3.12 ‘Soilscapes’, the National Soil Map of Wales (UK Soil Observatory (UKSO), 2016). [H]
Figure 3.13 Distribution of soil carbon in Wales, shown as carbon density (t/ha): a) depth 0-30 cm; b) depth 30-100 cm; c) depth 0-100 cm.
Figure 3.14 Contaminated Land sites in Wales identified under the Part 2A regime of the Environmental Protection Act 1990 (determinations reported by local authority).
Figure 3.15 Glastir Monitoring and Evaluation Programme (GMEP) data for topsoil: (a) Long term trends in carbon concentration (1978 to 2013); (b) Long term trends in topsoil pH; (c) Long term trends in topsoil phosphorus availability (Olsen-P); (d) Trend in topsoil mesofauna abundance. Solid blue line = Countryside Survey data (CS data); Dashed blue line = GMEP 2013 Wider Wales Survey. [M]

KEY EVIDENCE SOURCES
- Glastir Monitoring Evaluation Programme (GMEP)
- UK Soil Observatory (UKSO)
3.5. Geodiversity, geological features and processes (including minerals)

(See section 3.5 of the Technical Annex for Chapter 3 for more information)

KEY MESSAGES

Extent:
- Wales has some of the most varied geology in the world representing all geological periods and spanning 1.4 billion years of the Earth’s history. This diverse geology not only underpins our biodiversity and landscape but also provides important mineral resources81 [H].
- Two UNESCO Global Geoparks, GeoMôn and Fforest Fawr, cover 1,483 km² of Wales and are designated for the primary purpose of promoting geotourism82 (Figure 3.16) [H].
- 300 SSSIs in Wales, covering 48,815 ha83 [H], contain some 500 geological features and 93% of these features are in favourable condition84 (Figure 3.16) [L-H].

Trend:
- Following a long history, metal mining has ceased and there is only localised coal mining and slate quarrying in Wales. The aggregates industry is now the main mineral extraction industry in Wales, including marine and terrestrially derived aggregates85 (Table 3.1) [H].
- Geological hazards may change as a response to climate change. For example, coastal erosion, landslides and pollution from former mine sites86 [H]. The CCRA17 Evidence Report87 has identified risks to transport networks from slope and embankment failure. There is also a subsidence risk to subterranean infrastructure caused by falling and rising moisture levels – particularly in clay-rich soils.
- Exploration for conventional and unconventional sources of oil and gas remains a possibility in Wales88 (Figure 3.17) [H].

Evidence Gaps:
- Some areas of Wales have no recent geological mapping carried out by the British Geological Survey. This includes one area in mid-Wales where there is no published 1:50,000 scale map.
- The British Geological Survey has identified a number of geological formations in Wales that might potentially yield unconventional oil and gas supplies. The extent of the potential unconventional oil and gas resources remains unclear and can only be fully ascertained through exploratory work.
Table 3.1 Mineral production for 2014 [H].

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Thousand Tonnes Extracted 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal (deep-mining)</td>
<td>91</td>
</tr>
<tr>
<td>Coal (opencast)</td>
<td>2,343</td>
</tr>
<tr>
<td>Igneous Rock</td>
<td>1,905</td>
</tr>
<tr>
<td>Limestone & Dolomite</td>
<td>8,934</td>
</tr>
<tr>
<td>Sand & Gravel (land)</td>
<td>673</td>
</tr>
<tr>
<td>Sand & Gravel (marine)</td>
<td>632</td>
</tr>
<tr>
<td>Sandstone</td>
<td>2,774</td>
</tr>
<tr>
<td>Total</td>
<td>17,352</td>
</tr>
</tbody>
</table>
Figure 3.17 Potential unconventional gas resources in Wales. [H]

KEY EVIDENCE SOURCES

- British Geological Survey study of potential unconventional gas resources in Wales\(^88\)
- British Geological Survey (BGS) Geological Data\(^81, 91\)
- Wider value of UNESCO to the UK report\(^82\)
- UNESCO Global Geoparks Celebrating Earth Heritage, Sustaining local Communities report\(^92\)
- Fforest Fawr Geopark website\(^93\)
- GeoMôn Geopark website\(^94\)
- The UK Mineral Extraction Industry Report\(^95\)
- British Geological Survey United Kingdom Minerals Yearbook 2014\(^85\)
- Information on the Geological Conservation Review\(^96\)
PART B – WELSH ECOSYSTEMS

Overview

The land area of Wales covers 2,078,224 ha\(^9\). The Welsh marine area extends out to 12 nautical miles, covering just under 15,000 km\(^2\) or 41% of the territory of Wales\(^8\).

The Habitat Survey of Wales\(^9\) provides complete coverage of the country and was undertaken between 1979 and 1997. Updates in survey coverage have resulted from refined earth observation methods and the Glastir Monitoring and Evaluation Programme\(^1\). More detailed information for habitats which are a priority for conservation measures is provided by NRWs ongoing Phase 2 Habitat Survey.

The land-cover of Wales can be divided broadly into semi-natural habitats and modified land-cover types. Semi-natural habitats retain many of their characteristic species. Modified land-cover types include the built environment as well as land where ecological processes and species composition have been hugely altered, for example, improved grassland, arable land and conifer plantations. The representation of semi-natural habitat varies significantly across Wales. The Welsh lowlands are highly modified (Figure 3.18). Of the lowlands 17.3% is semi-natural habitat, whereas of the upland area 84% is semi-natural habitat. Semi-natural habitats in Wales cover a total of 626,100 ha (30% of the Welsh land surface)\(^9\) [M].

The marine environment includes 2,740 km of coastline\(^1\) [H]. The marine ecosystems in Wales form part of two wider biogeographic regions: the Irish Sea, and the Western Channel and Celtic Sea. There is a high diversity of habitats and species including sediment and biogenic habitats, sessile and highly mobile species. A proportion of marine habitats are surveyed and mapped\(^1\), but for some areas our understanding only comes from modelling\(^3\).
The way in which habitats are grouped in SoNaRR follows the system of the National Ecosystem Assessment (NEA), which combines the separate habitat types of the Habitats of Wales scheme into ‘broad habitats’. These are effectively broad ecosystem units. Table 3.2 describes what is included in the remainder of this Chapter in relation to the NEA groupings.

Table 3.2 What is included in each broad habitat.

<table>
<thead>
<tr>
<th>NEA broad habitat</th>
<th>Description (UK NEA, unless otherwise stated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mountains, Moors and Heaths</td>
<td>Mountainous habitats are those above the climatic tree-line. Moorlands and heaths are predominantly open and unenclosed. Includes: upland and lowland heathlands (including dwarf shrub heath), moorlands, blanket bog, montane habitats (including ffridd or the upland fringe that encompasses land occurring between the intensively managed lowlands and the open moor), inland rock habitats (exposures) and stands of bracken in the lowlands. Often interspersed with other habitats such as semi-natural grasslands, woodlands and surface water.</td>
</tr>
<tr>
<td>Semi-natural grasslands</td>
<td>A mixture of grasses and herbaceous plants, along with sedges, rushes, mosses and other low-growing species, often created by low-intensity, traditional farming or natural vegetation on poor soils or in exposed locations. They often contain a rich variety of grasses and herbs.</td>
</tr>
<tr>
<td>Enclosed farmland</td>
<td>Agricultural land surrounded by hedges, walls, fences and other field boundaries. Includes: arable crops, horticulture, orchards and temporary grasslands as well as agriculturally improved permanent grasslands. Excludes: the ffridd, areas of enclosed semi-natural grassland, scrub and farm woodland.</td>
</tr>
<tr>
<td>Woodland</td>
<td>Land where the ecological condition is, or will be, strongly influenced by the tree canopy. In terms of land cover statistics (in the UK), woodland is currently defined as land with trees where the mature trees would cover more than 20% by area. Large tracts are generally called forests, smaller units are described in a variety of terms such as woodlands, woods, copses and shelterbelts, but</td>
</tr>
<tr>
<td>Freshwaters</td>
<td>Freshwater habitats occur wherever rainfall, snowmelt or groundwater collects into flowing channels (rivers and streams), standing waters, or associated bogs, fens, grazing marshes, wetlands and floodplains. Groundwater is the water stored in soil and rocks. It provides base flow to springs, rivers and wetlands. This broad habitat includes groundwater, wetlands, rivers and streams, and standing waters (lakes and ponds).</td>
</tr>
<tr>
<td>Urban</td>
<td>The built environment. Includes: buildings, roads, gardens, parks and informal green spaces, waste sites and any other structure or space installed for human activities.</td>
</tr>
<tr>
<td>Coastal Margins</td>
<td>Habitats around the coastline of Wales. Includes: sand dunes, saltmarsh, sea cliffs, saline or coastal lagoons and shingle.</td>
</tr>
<tr>
<td>Marine</td>
<td>Includes: coastal and marine waters, the intertidal area and the inshore subtidal area. The intertidal area covers the shore from the high water mark down to the low water mark. The marine inshore subtidal area is the area of the sea bed that is always covered by water, from the low water mark out to 12 nautical miles.</td>
</tr>
</tbody>
</table>

Habitats of principle importance

In Wales the interim Section 7 list has 55 habitats of principle importance which were originally selected for the Section 42 list of the Natural Environment and Rural Communities Act 2006. These habitats cover terrestrial, freshwater and marine. They include blanket bog, ponds and seagrass beds and were selected for prioritised action from the UK Biodiversity Action Plan (BAP) using criteria based on the level of threat they face, their relative importance as habitat in Wales and whether remedial action will be able to improve their status. Terrestrial habitats of principle importance extend over a total area of 387,300 ha. The most extensive of these in Wales (each with a resource of >30,000 ha) include upland heathland, blanket bog, upland oak woodland, purple moor-grass and rush pasture, lowland dry acid grassland and...
coastal and floodplain grazing marsh [M]. However, some key habitats of conservation importance are scarce, small in extent and highly vulnerable [M]. Marine Intertidal BAP habitats extend over 15,000 ha102 [H]. The most extensive intertidal BAP habitat, mudflats, covers over 14,000 ha and is found all around the coast of Wales [H]. Honeycomb worm reefs cover 476 ha and are mainly found in South and West Wales [H]. More than 50\% of all BAP habitats were in decline in Wales in 2008108 [M].

European and UK protected sites

European protected sites are designated either as exemplars of listed habitat and species types or specifically to conserve wild birds that are listed as rare and vulnerable. The protection of these sites makes a significant contribution to conserving the habitats and wildlife species that live there. Protected sites also exist in the marine environment, and work continues to ensure these sites contribute to an ecologically coherent network of marine protected areas in UK seas. Together with our nationally designated sites (SSSIs) they are a good indicator of the health of semi-natural habitats across Wales and contribute to the understanding and practice of sustainable management of natural resources in Wales.

Natural Resources Wales has a responsibility to report on these sites. The figures used in this Chapter are based on the most recent reported condition assessments. As an overview, roughly a quarter of Special Areas of Conservation (SAC) habitats in Wales are in a favourable condition107 (Figure 3.19).

![Figure 3.19 Percentage of Special Area of Conservation (SAC) habitat features in favourable and unfavourable condition107. Number of habitat features in assessment shown in brackets. [H]](image-url)
3.6. Mountains, moors and heaths

(See section 3.6 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>• Mountain, moorland and heath habitats extend over 261,824 ha in Wales (Figure 3.20) [M].</td>
</tr>
<tr>
<td>• 70,130 ha (27% of the total) of mountain, moorland and heath habitat occur as SSSI features across Wales on 118 SSSI (Table 3.3) [M]. Extensive areas are included within the Glastir scheme with grazing prescriptions helping to ensure appropriate grazing regimes [H].</td>
</tr>
<tr>
<td>• The most extensive Habitats and Species Directive Annex I habitats of mountain moor and heath are blanket bog, European dry heaths and northern Atlantic wet heaths with Erica tetralix; 12 other Annex I habitats also occur with a collective total area of 147,700 ha (Table 3.4) [M].</td>
</tr>
<tr>
<td>Condition:</td>
</tr>
<tr>
<td>• The condition of the most extensive semi-natural habitats of mountain, moorland and heath within SSSIs ranges between 63 and 73% unfavourable (Table 3.3) [L]. The overall assessment of the conservation status of the 15 Annex I habitats associated with mountain, moorland and heath is either bad or inadequate (Table 3.4). For many habitats this assessment relates mainly to condition, with habitat area judged as stable for 11 of habitats, but unknown or declining for 4 (including blanket bog) [H].</td>
</tr>
<tr>
<td>• Habitat fragmentation has resulted in poor connectivity for lowland examples of mountain, moorland and heath habitats (notably lowland heathland) [H].</td>
</tr>
<tr>
<td>• There is high habitat diversity and good connectivity within the ffridd [M].</td>
</tr>
<tr>
<td>• Some 60% of the Welsh deep (=/>0.5 m) peat resource occurs within the mountain, moorland and heath habitat suite with most of it represented by blanket bog. Some 59% of the blanket bog resource displays signs of modification resulting from drainage and other land-use impacts. Significant areas of deep peat occur elsewhere in the uplands, chiefly in conifer plantations [M], acid grassland, heathland and improved grassland. Exposed peat resulting from erosion extends over less than 100 ha but affects over 180 sites [M].</td>
</tr>
<tr>
<td>• Approximately 2,000 km of drainage ditches occur on upland peatlands with at least 742 km blocked already [H] contributing to improvements in biodiversity, carbon storage and sequestration and flood risk management [M].</td>
</tr>
<tr>
<td>Trend:</td>
</tr>
<tr>
<td>• Agri-environment measures continue to be effective in helping to protect some of the most extensive mountain, moorland and heath habitats, with encouraging trends noted for blanket bog and heathland, though less strong for flush and spring [H]. A significant increase in Sphagnum cover has been noted between 2007 and 2013/14 but this is based on a relatively limited sample size.</td>
</tr>
</tbody>
</table>
KEY MESSAGES

- Data from the Glastir Monitoring and Evaluation Programme (GMEP)116 indicate that the extent of dwarf shrub, heath and bracken has declined significantly since 2007, with a slight increase in the area of blanket bog since 1990 L. The area of upland bog restored following plantation is steadily increasing as a result of NRW activity on sites prioritised for this measure and also through the wind energy programme. There has been no overall improvement in condition for this broad habitat as a whole since 1990116 L.

- The CCRA17 Evidence Report120 has identified climate change risks to natural carbon stores and carbon sequestration, emphasising that upland and lowland deep peat soils represent Wales' largest terrestrial store of carbon. HL

Evidence gaps:

- We only have limited information on the current distribution, extent and condition of Mountain, Moor and Heath habitats in Wales.

- There are limited recent data on condition of mountains, moorlands and heaths features on SSSIs in Wales.

Extent:

![Figure 3.20 Breakdown of the component habitats of mountain, moorland and heath in Wales. All numbers are in hectares (ha)108. [M]](image)

Condition:

Table 3.3 Summary of the representation of mountain, moorland and heathland habitats within the SSSI series based on data up until 2010; data are rounded to the nearest 10 ha109
Data in the final column are based on Allen (2004)112 and in most cases relate to a subset of the SSSI sites notified for each feature [L].

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Area of qualifying features within SSSI (ha)</th>
<th>Number of SSSI qualifying features</th>
<th>% assessed features unfavourable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blanket bog</td>
<td>25,900</td>
<td>27</td>
<td>67</td>
</tr>
<tr>
<td>Flush</td>
<td>3,470</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Fen</td>
<td>50</td>
<td>8 Insufficient data</td>
<td></td>
</tr>
<tr>
<td>Marshy grassland</td>
<td>760</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>Dry heath</td>
<td>31,220</td>
<td>83</td>
<td>73</td>
</tr>
<tr>
<td>Wet heath</td>
<td>4,290</td>
<td>54</td>
<td>63</td>
</tr>
<tr>
<td>Montane</td>
<td>230</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Inland rock</td>
<td>3,900</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Tall herb and fern</td>
<td>70</td>
<td>5</td>
<td>33</td>
</tr>
</tbody>
</table>

Trend:

Table 3.4 Summary of the conservation status of Habitats and Species Directive Annex I habitats associated with mountain, moorland and heath121 [H]. * Indicates Habitats Directive priority status. Key: \rightarrow = stable; \downarrow = decreasing less than 1% per year; $\downarrow\downarrow$ = decreasing more than 1% per year; $\downarrow\downarrow\downarrow$ = decreasing rate unknown; \uparrow = increasing; - = unknown.

<table>
<thead>
<tr>
<th>Habitat name</th>
<th>Surface area (ha) - Wales</th>
<th>Proportion (%) of UK Surface Area in Wales</th>
<th>Short-term trend direction – Wales (area)</th>
<th>Short-term trend direction – UK (area)</th>
<th>Overall assessment of conservation status – UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline fens*</td>
<td>120</td>
<td>3.6</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>Bad</td>
</tr>
<tr>
<td>Alpine pioneer formations of the Caricion bicoloris-atrofuscace</td>
<td>3</td>
<td>3.8</td>
<td>\rightarrow</td>
<td></td>
<td>Bad</td>
</tr>
<tr>
<td>Blanket bogs (* if active bog)</td>
<td>53,200</td>
<td>2.4</td>
<td>\downarrow</td>
<td>\rightarrow</td>
<td>Bad</td>
</tr>
<tr>
<td>Alpine and subalpine calcareous grasslands*</td>
<td>1.7</td>
<td>0.2</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>Bad</td>
</tr>
<tr>
<td>Hydrophilous tall herb fringe communities of plains and of the montane to alpine levels</td>
<td>65</td>
<td>22.6</td>
<td>\rightarrow</td>
<td></td>
<td>Bad</td>
</tr>
<tr>
<td>Siliceous alpine and boreal grasslands*</td>
<td>84</td>
<td>0.1</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>Bad</td>
</tr>
<tr>
<td>Habitat name</td>
<td>Surface area (ha) - Wales</td>
<td>Proportion (%) of UK Surface Area in Wales</td>
<td>Short-term trend direction – Wales (area)</td>
<td>Short-term trend direction – UK (area)</td>
<td>Overall assessment of conservation status – UK</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Species-rich Nardus grassland, on siliceous substrates in mountain areas (and submountain areas in continental Europe)*</td>
<td>138</td>
<td>2.7</td>
<td>→</td>
<td>↓</td>
<td>Bad</td>
</tr>
<tr>
<td>Calcareous and calcshist screes of the montane to alpine levels (Thlaspietea rotundifolii)</td>
<td>34.3</td>
<td>5.7</td>
<td>-</td>
<td>-</td>
<td>Bad</td>
</tr>
<tr>
<td>Calcareous rocky slopes with chasmophytic vegetation</td>
<td>270</td>
<td>38.6</td>
<td>-</td>
<td>-</td>
<td>Bad</td>
</tr>
<tr>
<td>Limestone pavements</td>
<td>75</td>
<td>2.9</td>
<td>→</td>
<td>→</td>
<td>Bad</td>
</tr>
<tr>
<td>Siliceous rocky slopes with chasmophytic vegetation</td>
<td>1,200</td>
<td>3.0</td>
<td>-</td>
<td>→</td>
<td>Inadequate</td>
</tr>
<tr>
<td>Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia ladani)</td>
<td>317</td>
<td>0.5</td>
<td>-</td>
<td>→</td>
<td>Inadequate</td>
</tr>
<tr>
<td>Alpine and Boreal heaths</td>
<td>35</td>
<td>0.1</td>
<td>-</td>
<td>→</td>
<td>Bad</td>
</tr>
<tr>
<td>European dry heaths</td>
<td>77,740</td>
<td>8.7</td>
<td>→</td>
<td>→</td>
<td>Bad</td>
</tr>
<tr>
<td>Northern Atlantic wet heaths with Erica tetralix</td>
<td>14,414</td>
<td>3.1</td>
<td>↓</td>
<td>→</td>
<td>Bad</td>
</tr>
</tbody>
</table>
KEY EVIDENCE SOURCES

- Habitats of Wales (Blackstock et al, 2010)
- Glastir Monitoring Evaluation Programme (GMEP)
3.7. Semi-natural grasslands

(See section 3.7 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>• Grassland makes up nearly two thirds of the land cover of Wales123 \cite{H}. The majority (more than 1,000,000 ha) is agriculturally improved \cite{H} and only about 192,000 ha is semi-natural grassland (9% of the land cover of Wales)123 (Table 3.5, Figure 3.21) \cite{M}.</td>
</tr>
<tr>
<td>• There are some 78,000 ha of grassland Priority Habitat (Table 3.5) \cite{M}, more than 90% of which is in the lowlands123, 124 \cite{H}.</td>
</tr>
<tr>
<td>Condition:</td>
</tr>
<tr>
<td>• All 8 forms of European protected grassland occurring in Wales have an unfavourable conservation status in the UK - 92% of grassland SAC features in Wales are considered to be in unfavourable condition125 \cite{H}.</td>
</tr>
<tr>
<td>• A rapid review of grassland features on SSSIs in Wales in 2003 estimated that only 43% were in favourable condition126 (Table 3.6). \cite{L}</td>
</tr>
<tr>
<td>Trend:</td>
</tr>
<tr>
<td>• The extent of lowland semi-natural grasslands has decreased dramatically since the 1930s124, 127, 128 \cite{H}; an estimated 91% was lost in Wales between the 1930s and the 1990s124 (Table 3.7) \cite{M}. Dry lowland grassland habitat has been particularly badly affected, with an estimated 97% decline in that period, so that, for example, only 1,600 ha of unimproved neutral grassland remain124 \cite{M}.</td>
</tr>
<tr>
<td>• Semi-natural lowland grasslands have become highly fragmented in most areas124 greatly restricting movement of less mobile species between habitat patches \cite{H}.</td>
</tr>
<tr>
<td>• The rate of loss of semi-natural grassland is thought to have slowed124, 129 \cite{L}, although losses of high quality lowland semi-natural grassland have continued into the 21st Century124 \cite{H}.</td>
</tr>
<tr>
<td>Evidence gaps:</td>
</tr>
<tr>
<td>• There are limited recent data on condition of grassland features on SSSIs in Wales.</td>
</tr>
<tr>
<td>• There is limited information on current extent and condition of grasslands outside protected sites.</td>
</tr>
</tbody>
</table>
Table 3.5 Extent of different semi-natural grasslands in Wales. Extent figures from Blackstock et al (2010)123 except * Stevens et al (2010)124 and JNCC (2013)125. Note that 'upland marshy grassland' (29,204 ha) is included in the 'mountain, moorland and heath' section.

<table>
<thead>
<tr>
<th>Grassland habitats in Wales</th>
<th>Semi-natural grassland (ha)</th>
<th>Priority Grassland Habitat (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unimproved neutral grassland (Lowland Meadows)*</td>
<td>1,605</td>
<td>1,605</td>
</tr>
<tr>
<td>Lowland dry acid grassland</td>
<td>39,517</td>
<td>39,517</td>
</tr>
<tr>
<td>Upland dry acid grassland</td>
<td>113,204</td>
<td>-</td>
</tr>
<tr>
<td>Lowland calcareous grassland</td>
<td>1,158</td>
<td>1,158</td>
</tr>
<tr>
<td>Upland calcareous grassland</td>
<td>653</td>
<td>653</td>
</tr>
<tr>
<td>Lowland marshy grassland (Purple Moor-grass and Rush Pastures)</td>
<td>35,341</td>
<td>35,341</td>
</tr>
<tr>
<td>Calaminarian grassland#</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>TOTAL</td>
<td>191,527</td>
<td>78,323</td>
</tr>
</tbody>
</table>

Figure 3.21 Distribution map of (left) unimproved neutral grassland in Wales compared with that of (right) improved grassland. The unimproved neutral grassland includes only stands confirmed by thorough floristic survey (from Blackstock et al. 2010108).
Table 3.6 Summary of lowland grassland SSSI feature condition assessments (from Allen, 2004126). * Includes calaminarian grassland.

<table>
<thead>
<tr>
<th>SSSI feature</th>
<th>Number of assessed features</th>
<th>% favourable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutral grassland</td>
<td>145</td>
<td>37</td>
</tr>
<tr>
<td>Calcareous Grassland</td>
<td>29</td>
<td>31</td>
</tr>
<tr>
<td>Acid Grassland</td>
<td>34</td>
<td>62</td>
</tr>
<tr>
<td>Marshy grassland</td>
<td>125</td>
<td>45</td>
</tr>
<tr>
<td>Rock and spoil*</td>
<td>9</td>
<td>78</td>
</tr>
<tr>
<td>ALL</td>
<td>342</td>
<td>43</td>
</tr>
</tbody>
</table>

Table 3.7 Recorded losses of semi-natural grasslands.

<table>
<thead>
<tr>
<th>Area</th>
<th>Timeframe</th>
<th>Loss of semi-natural grassland habitat</th>
<th>Main reason for change</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>England and Wales</td>
<td>1930-1984</td>
<td>97%</td>
<td>Drainage, ploughing and fertiliser use</td>
<td>Fuller 1987127</td>
</tr>
<tr>
<td>Wales</td>
<td>1930s-1990s</td>
<td>91% (including semi-improved grassland)</td>
<td>Conversion to agriculturally improved grassland</td>
<td>Stevens et al 2010124</td>
</tr>
<tr>
<td>Wales</td>
<td>1996-2004</td>
<td>Significant damage/deterioration at 25% (24 out of 96) of unprotected sites.</td>
<td>Agricultural improvement (62% sites); under-management (30% sites)</td>
<td>Stevens et al 2010124</td>
</tr>
<tr>
<td>England</td>
<td>1960-2013</td>
<td>73% (on unprotected land) 9% (on protected land) by area</td>
<td>Conversion to agriculturally-improved grassland or arable cultivation</td>
<td>Ridding et al 2015128</td>
</tr>
</tbody>
</table>

KEY EVIDENCE SOURCES
- Grasslands of Wales: A survey of lowlands species rich grasslands124
- Habitats of Wales (Blackstock et al, 2010)123
- JNCC (2013) 3rd UK Habitats Directive Reporting 2013125
3.8. Enclosed farmland

(See section 3.8 of the Technical Annex for Chapter 3 for more information)

KEY MESSAGES

Extent:
- Enclosed Farmland covers around 1 million ha or c.54% of agricultural land\(^{130}\); it plays a major role in food production\(^{131}\) with resulting impacts on soil, water, biodiversity and GHG emissions\(^{132}\). [H]
- The area of arable and horticultural crops (87,000 ha) has increased by 35% over the last ten years but still only represents some 8.7% of Enclosed Farmland\(^{133}\). [H]

Condition:
- Our arable-associated flora is the most threatened group of plants in the UK with 54 species considered rare or threatened and 7 species extinct in the arable setting\(^{134}, 135\) [H].
- The total length of hedgerows in Wales has been estimated at 106,000 km but 78% of this is in unfavourable condition\(^{136}\) [M]. Some 5,800 km has been restored or is planned for restoration under agri-environment schemes\(^{137}, 138\) [H].
- Work by the Glastir Monitoring and Evaluation Project suggests there has been a small increase in the number of species of lower soil fertility levels\(^{139}\) [H]. In contrast, soil sampling on intensively managed farms, carried out as part of Glastir Water Management Planning, revealed that over 75% of enclosures sampled were too acidic for optimum plant growth whilst over a third of agriculturally improved fields in the study exceeded the optimum phosphate level\(^{140}\) [M].

Trend:
- Traditional orchards have become increasingly rare due to neglect, agricultural intensification and development pressures; all of which threaten their characteristic biodiversity\(^{141}\) [H].
- *Chalara* (ash die-back) is a major threat to hedgerows. Welsh hedgerows contain a considerable quantity of ash, both in the shrub layer and as standard trees. As ash declines over the coming years, gaps will form in hedgerows and a significant proportion of the mature trees in our landscape will be lost. This is likely to have a major impact on other species dependent on both hedgerows and free-standing trees\(^{142}\) [H].
- The CCRA17 Evidence Report\(^{143}\) has identified risks and opportunities from changes in agricultural productivity and land suitability. There are also risks associated with water scarcity and flooding; from pests, pathogens and invasive species; and from change in frequency and/or magnitude of extreme weather and wildfire events. Projected climate change may provide new cropping opportunities [H], but more agricultural land is likely to suffer from water deficits in summer and waterlogging in winter\(^{143}\) [M].

Evidence gaps:
- Limited information on the current condition of Enclosed Farmland habitats in Wales.
- Limited information on the distribution of *Chalara* infected ash trees within Wales.
Extent:

Although comprised primarily of intensively managed arable land and improved grassland, enclosed farmland also includes the following priority habitats:

<table>
<thead>
<tr>
<th>Priority Habitat</th>
<th>Extent in Wales</th>
<th>Welsh Government Rural Communities Rural Development Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedgerows</td>
<td>Length 106,000 km136 [M]</td>
<td>Just under 3,530 km restored under the Tir Gofal agri-environment scheme137. A further 2,300 km has been restored or is under a current management commitment within Glastir138, [H]</td>
</tr>
<tr>
<td>Arable field margins</td>
<td>Overall extent unknown. Limited information on the extent of arable field margins in Wales but just over 20 ha of arable land has been notified as SSSI144. [H]</td>
<td>Glastir contracts for fallow land, unsprayed cereals and roots now cover 8,203 ha138. In addition, organic arable farming covers around 2,800 ha145 although some of this land is also under Glastir contract. [H].</td>
</tr>
<tr>
<td>Traditional orchards</td>
<td>Estimated to be 4,687 individual sites, covering 653 ha in total at an average of only 0.14 ha each141. [H]</td>
<td>Some 51 ha of existing traditional orchards and 5.5 ha of newly created, traditionally managed orchards are now included within Glastir138, [H]</td>
</tr>
</tbody>
</table>

Trend:

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Trends</th>
</tr>
</thead>
</table>
| Hedgerow | • Continued decline in length of managed hedgerows, despite progressive uptake of agri-environment schemes, resulting in increase in both relict and overgrown hedges139, [H]
• Number of hedgerow trees reduced by 3.9% (1998-2007)136, [M] |
| Arable | • Significant decrease in arable species richness in Wales between 1998 and 2007136, [M]
• Arable weed/field margin habitats were widespread and abundant until 1950s when herbicides became widely used. A gradual decline in such communities and their associated fauna has occurred since then as cultivation became more intensive146.
• Species loss slowed in recent years due to an increase in organic farming and support from agri-environment schemes136, [M]
• Cultivated area declined by 75% between the 1930s/40s and 1980s/90s146. Area of arable and horticultural cropping expanded by 34% (65,000 ha to 87,000 ha) over the last ten years |
<table>
<thead>
<tr>
<th>Habitat</th>
<th>Trends</th>
</tr>
</thead>
</table>
| **Traditional orchards** | • The area covered by orchards was estimated to have declined by 94% between 1958 and 1992\(^{141}\). [H]
• The modern orchard area has recently expanded in response to the growth of the cider market, but most modern orchards are efficiently managed plantations with relatively limited biodiversity value\(^{141}\). [H] |
| **Improved grassland** | • There has been a small increase in the number of species indicative of lower soil fertility levels\(^{139}\). [H] |

Projected changes in the climate are likely to impact on Enclosed Farmland as follows\(^{143, 147}\):
- More areas experiencing water deficits during the summer months [H].
- Wetter winters will increase the prevalence of waterlogged soils [M].
- Increased risks from pests, pathogens and invasive species [H].
- New opportunities to grow alternative forage crops and diversify existing grassland swards [M].

In addition to these risks, future climate-related changes in global food supply are likely to impact on Welsh agriculture and may increase the comparative advantage of specific commodities and lead to land use change. Such global changes could present both opportunities and risks for the Welsh agricultural sector\(^{143}\).

The effects of climate change on highly productive grass species are reasonably well understood, but much less is known about the impacts on species characteristic of permanent semi-natural pastures. Changes in these habitats could have substantial knock-on effects on the livestock industry because of the strong inter-relationships between enclosed farmland and mountain, moor and heath.

ENCLOSED FARMLAND KEY EVIDENCE SOURCES
- AHDB Dairy (Agriculture and Horticulture Development Board)\(^{148}\)
- Business Wales report on the poultry sector\(^{149}\)
- Estimates from Welsh Agricultural Survey, June 2015\(^{133}\)
- Countryside Survey 2007. Results for Wales\(^{136}\)
- Glastir Monitoring and Evaluation Programme (GMEP)\(^{139}\)
- Glastir Advanced Water Quality Report, 2014: Results from 2013-2014 visits. Accessible from Natural Resources Wales\(^{140}\).
- Great Britain Poultry Register Statistics, 2013\(^{150}\)
- Preliminary atlas of field boundary types in Wales, Gwynedd Archaeological Trust, 2002\(^{151}\)
- Habitats of Wales (Blackstock et al 2010)\(^{130}\)
- Flying the Flag: Decade of Success for the Welsh Red Meat Brands, Hybu Cig Cymru, 2013\(^{152}\)
- The impact of climate change on the capability of soils for agriculture as defined by the Agricultural Land Classification report\(^{153}\)
- Extent of arable SSSI’s (NRW 2016)\(^{144}\).
- Traditional Orchard Habitat Inventory of Wales\(^{141}\).
ENCLOSED FARMLAND KEY EVIDENCE SOURCES

- Wales' Important Arable Plants (Plantlife)\(^{146}\)
- Orchards in Wales (TACP, 1994)\(^{141}\).
- Tir Gofal - Report presented by the Auditor General to the National Wales 15 November 2007\(^{137}\)
- Welsh Government Rural Payments Agency, 2016\(^{138}\).
- LANDMAP Statistics 2016: Visual and Sensory Aspect\(^{154}\).
3.9. Woodland

(See section 3.9 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>• Woodland area in Wales has nearly tripled since the 1800s, now covering 306,000 ha(^\text{155}) (94,940 ha of which comprises ancient woodland) (Table 3.8). However, Wales is one of the least wooded countries in Europe (14.8% of land area compared to EU average of 38%) [H].</td>
</tr>
<tr>
<td>Condition:</td>
</tr>
<tr>
<td>• At least 203,000 ha of woodland in Wales is managed to the UK Forestry Standard (the standard for sustainable forest management in the UK and a proxy measure of woodland condition in woodlands that are managed); this is an increase from 123,000 ha in 2001(^\text{155}). However, around 40% of Wales' woodlands have little or no management which reduces their resilience and ability to provide well-being benefits [M].</td>
</tr>
<tr>
<td>• Whilst the overall conservation status of designated woodland habitats in Wales is regarded as unfavourable, favourable management is increasing with local recovery in response to targeted management actions(^\text{156, 157}) [H]. GMEP uses a number of ancient woodland indicator species as a measure for condition and found an increase between 2007 and 2014(^\text{158}).</td>
</tr>
<tr>
<td>• Fragmentation is a significant pressure affecting native woodland condition - there are nearly 22,000 woodlands identified as being smaller than 2.0 ha(^\text{159}). Woodland condition is negatively impacted by browsing and grazing pressures from domesticated and wild animals, especially wild deer(^\text{160}), and is also affected by INNS, including the grey squirrel and Rhododendron ponticum (common rhododendron) [H].</td>
</tr>
<tr>
<td>Trend:</td>
</tr>
<tr>
<td>• The total area of woodland in Wales has changed little in the past 20 years. The total amount of new planting between 2009 and 2015 was 3,392 ha(^\text{155}) (Figure 3.22). The rates of new woodland creation are low, of small average size and highly dependent on public funding. New planting is mainly of native broadleaves which impact both on Welsh woodland’s capacity in the medium and long term for softwood timber production and its potential for overall carbon abatement [H].</td>
</tr>
<tr>
<td>• As a productive resource, the most recent data indicates that the forestry sector (forestry and logging, manufacture of wood and products of wood and cork, manufacture of paper and paper products) contributes a GVA of £499.3M per annum(^\text{155}) to the Welsh economy [H]. Forecasts of future timber production show a drop in availability from current levels unless more woodland is brought into sustainable management, replanting rates are increased and more new woodland is created that is capable of producing utilisable timber(^\text{161, 162}) (Table 3.9) [H].</td>
</tr>
<tr>
<td>• Woodland condition and extent in Wales has already been (to a limited known extent) and will in the future (to a greater predicted extent) be affected by climate change. Tree health is already declining. By the end of 2015, approximately 36% of larch in Wales had been found to be infected with Phytophthora ramorum(^\text{163}) (Figure 3.23) and Chalaras Ash Dieback had...</td>
</tr>
</tbody>
</table>
KEY MESSAGES

been located at 100 individual sites across Wales\footnote{164}[H]. The pressures from pests and diseases will increase in the future.

- The CCRA17 Evidence Report\footnote{165}[H] has identified risks and opportunities from changes in forestry productivity and land suitability. There are also risks associated with water scarcity and flooding; from pests, pathogens and invasive species; and from change in frequency and/or magnitude of extreme weather and wildfire events.

- Woodland productivity and carbon sequestration rates are also likely to be impacted by climate change. Current carbon sequestration by Welsh woodlands is estimated to be about 1,419,000 tonnes annually\footnote{155}[H]. Forestry is predicted to remain a net sink for atmospheric carbon [H].

Evidence Gaps:

- Measuring woodland condition is expensive, and data on extent and condition – including of our coniferous forests – is limited. The National Forest Inventory (NFI) will provide a sample based indication of condition at a Wales scale when it publishes its official report on woodland condition in 2017.

- There is currently very limited information about the distribution of pest and disease outbreaks throughout Wales and Britain. There is information about the known spread of quarantine pests and diseases but the vast majority of pests and diseases are not mapped. Although a data management project is being developed across GB to gather all the current and future information together, there will still be limitations due to the level of resource required to undertake surveillance to provide data across such a wide range of pests and diseases.

Table 3.8 Classification of woodland in Wales, by type, including area in hectares (ha). [H]

<table>
<thead>
<tr>
<th>Woodland type</th>
<th>Definition</th>
<th>Current Area (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancient Woodland (AW)</td>
<td>Total Ancient woodland
Ancient Woodland is defined as land that has had continuous woodland cover since at least 1600 AD. The Ancient Woodland Inventory\footnote{166}[AWI] for Wales was updated in 2011 using Epoch 1 maps from the 1800s. Ancient woodland is subdivided into ASNW, PAWs and RAW according to the management of the woodland on the site.</td>
<td>94,940</td>
</tr>
<tr>
<td>Ancient Semi Natural Woodland (ASNW)</td>
<td>These woodlands have a continuous history of being managed as semi-natural woodland on ancient sites. The trees and shrubs are native to the site and not generally obviously planted. They have high ecological diversity supporting a high proportion of scarce or rare woodland flora and fauna (often those with limited dispersal ability) and</td>
<td>41,790</td>
</tr>
<tr>
<td>Woodland type</td>
<td>Definition</td>
<td>Current Area (ha)</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Plantations on Ancient Woodland (PAWS)</td>
<td>Former Ancient Semi-natural Woodland (ASNW) that has been more or less completely replanted, often but not exclusively with conifers and many in the 20th century. These are widely distributed through Wales.</td>
<td>25,750</td>
</tr>
<tr>
<td>Restored Ancient Woodland (RAW)</td>
<td>These are PAWs that have been/are being restored to mainly native tree species with a more natural woodland structure.</td>
<td>21,960</td>
</tr>
<tr>
<td>Ancient woodland site of Unknown category (AWSU)</td>
<td>Woodlands which may be ASNW, PAWS or RAW. These areas are predominantly in transition where the existing tree cover is described as shrubs, young trees, felled or ground prepared for planting.</td>
<td>5,440</td>
</tr>
<tr>
<td>Total non-ancient woodland</td>
<td>Recent woodland that has not been in continuous woodland cover as defined by the AWI (2011). Non-ancient woodland is sub-divided into:</td>
<td>211,060</td>
</tr>
<tr>
<td>Non-Ancient native woodland</td>
<td>Recent woodland which has a tree canopy that consists of more than 50% tree species native to Wales.</td>
<td>52,005</td>
</tr>
<tr>
<td>Non-Ancient non-native woodland</td>
<td>Recent woodland which has a tree canopy that consists of more than 50% species which are not native to Wales.</td>
<td>159,055</td>
</tr>
<tr>
<td>Total Woodland area</td>
<td></td>
<td>306,000</td>
</tr>
</tbody>
</table>
Figure 3.22 New planting in Wales (hectares, ha), by woodland type (broadleaves and conifers), 1971-2015. [H]
Table 3.9 Forecast of timber availability in Wales (thousand m3 overbark standing – 000s m3 obs), 2017-2061162. S = softwood, H = hardwood. [H]

<table>
<thead>
<tr>
<th>Year</th>
<th>WGWE</th>
<th>Private</th>
<th>Total</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>H</td>
<td>S</td>
<td>H</td>
</tr>
<tr>
<td>2017-21</td>
<td>991</td>
<td>11</td>
<td>949</td>
<td>46</td>
</tr>
<tr>
<td>2022-26</td>
<td>895</td>
<td>17</td>
<td>1,087</td>
<td>77</td>
</tr>
<tr>
<td>2027-31</td>
<td>778</td>
<td>12</td>
<td>775</td>
<td>100</td>
</tr>
<tr>
<td>2032-36</td>
<td>934</td>
<td>14</td>
<td>736</td>
<td>115</td>
</tr>
<tr>
<td>2037-41</td>
<td>794</td>
<td>19</td>
<td>679</td>
<td>153</td>
</tr>
<tr>
<td>2042-46</td>
<td>531</td>
<td>56</td>
<td>490</td>
<td>243</td>
</tr>
<tr>
<td>2047-51</td>
<td>585</td>
<td>19</td>
<td>521</td>
<td>227</td>
</tr>
<tr>
<td>2052-56</td>
<td>495</td>
<td>28</td>
<td>734</td>
<td>197</td>
</tr>
<tr>
<td>2057-61</td>
<td>679</td>
<td>28</td>
<td>694</td>
<td>139</td>
</tr>
</tbody>
</table>

Figure 3.23 Distribution of Phytophthora ramorum in Wales in 2016163. [H]
Figure 3.24 Modelled Suitability change in Sitka spruce and Sessile oak based on predicted climate change by 2080, based on UK Climate Change Projections 2002 (UKCIP02) predictions (High scenario)\(^{167}\).

KEY EVIDENCE SOURCES

- Woodlands for Wales – the Welsh Assembly Government’s Strategy for Woodlands and Trees\(^{168}\)
- Forestry Statistics (Forestry Commission 2015)\(^{169}\)
- Combating climate change - a role for UK forests report\(^{170}\)
- Impacts of climate change on forestry in Wales (FC Information Note 301)\(^{171}\)
- Ancient Woodland Inventory\(^{166}\)
- Upland forestry Wales study - Welsh Analysis of Land-use Economics & Subsidies\(^{172}\)
- ConFor. Welsh Softwood Timber Supplies and our Green Economy\(^{161}\)
- The Role of Productive Woodland in Water Management report\(^{173}\)
- Inquiry into the public forestry estate in Wales\(^{174}\)
- UK NEA Chapter 8 Woodlands\(^{175}\)
- British Woodlands Survey 2015\(^{176}\)
- Welsh Assembly Government’s strategy for wild deer management in Wales\(^{160}\)
- Wales' Tree Health Strategy\(^{177}\)
KEY EVIDENCE SOURCES

- Understanding GHG balance in Britain’s forests report178
- Sustainable forest management in a time of ecosystem services frameworks: common ground and consequences. *Journal of Applied Ecology*179
- The State of the UK’s Forests, Woods and Trees. Perspectives from the sector. Policy Paper180
- Woodland Indicators by Local Authority. Unitary and county councils. Research Report181
- Glastir Monitoring and Evaluation Programme (GMEP)158
3.10. Freshwater

(For more information see section 3.10 of the Technical Annex for Chapter 3)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>• Wales has approximately 24,000 km of rivers and streams182. Around 15% of the land area of Wales drains into 558 lakes (defined as ≥1 ha), including over 150 large scale reservoirs which cover 8,143 ha183 [H].</td>
</tr>
<tr>
<td>• Raised bog and fen are the main lowland peatland types in Wales; 81% and 59% respectively of the SSSI resource of these habitats are in unfavourable condition184 (Table 3.10) [L].</td>
</tr>
<tr>
<td>• Most floodplain areas are heavily modified in Wales, with semi-natural habitats accounting for only 16% of the total area185 [M].</td>
</tr>
<tr>
<td>Condition</td>
</tr>
<tr>
<td>• In 2015, 63% of all freshwater water bodies defined by the Water Framework Directive were not achieving good or better overall status186, 187 (Figure 3.25, Figure 3.26, Figure 3.27, Figure 3.28) [H]. One out of six freshwater habitat types are in Favourable Conservation Status188 [H]. 2.4% of Wales' land area is designated as a Nitrate Vulnerable Zone (NVZ) as a result of agriculture; this contributes to the risk of nitrate polluted waters189 [H].</td>
</tr>
<tr>
<td>• The Loughor Estuary, River Loughor, River Wye, Tawe Estuary, Cardiff Bay, River Alyn are all designated as Urban Waste Water Treatment (UWWT) Directive Sensitive Areas (eutrophic). In these areas better sewage treatment has been installed to remove nutrients and so protect waters that are threatened by eutrophication190 [H].</td>
</tr>
<tr>
<td>Trend:</td>
</tr>
<tr>
<td>• Water quality in rivers has generally improved over the last 25 years, mainly as a result of improvements to sewage discharges. Connectivity has been restored at some sites by removing redundant weirs or installing fish passes186, 191 [H]. However, the area of land designated as NVZ is likely to increase due to evidence of nutrient enrichment of surface and groundwaters resulting from agricultural practices192 [H].</td>
</tr>
<tr>
<td>• Upland lakes and rivers show sustained recovery from the harmful effects of acid rain193, 194 (Table 3.11) [H].</td>
</tr>
<tr>
<td>• Loss of lowland wetland habitat has declined greatly since the turn of the century194, 195 (Table 3.12) [H].</td>
</tr>
<tr>
<td>• Climate change is predicted to affect the amount and distribution of rainfall with subsequent impacts on flows and water levels, drought and flood events and an increase in water temperatures. These changes may lead to a decline in water quality, impact some species negatively, increase the risk from invasive species and lead to changes in the way ecosystems function; for example, there may be an increased likelihood of algal blooms196 [M]. The CCRA17 Evidence Report196 has identified the risks to freshwater species from higher water temperatures and also the risk from land management practices that exacerbate flood risk.</td>
</tr>
</tbody>
</table>

Evidence Gaps
- Ecological impacts resulting from sediment and hydromorphological changes.
- Impacts of new and emerging chemicals and substances, such as neonicotinoid pesticides, nanoparticles and pharmaceuticals, on water quality and ecology.
- Assessment of the condition of the wetland resource.
- Understanding the impacts of climate change on water quality and the vulnerability of ecosystems, water dependent habitats and species.

Condition:

![River, Transitional and Coastal water bodies Overall Status 2015](image)

Figure 3.25 Water Framework Directive classification, overall status 2015: surface waters186. [H]
Figure 3.26 Water Framework Directive classification, overall status 2015: groundwaters186. [H]

Figure 3.27 Water Framework Directive classification, element status, 2015: rivers186. [H]
Figure 3.28 Water Framework Directive classification, element status, 2015: lakes[H]

Table 3.10 Summary of the representation of lowland terrestrial wetland habitats within the SSSI series[197] * in most cases relates to a subset of the SSSI sites notified for each feature.

<table>
<thead>
<tr>
<th>Habitat</th>
<th>Area (ha) of qualifying feature within SSSI</th>
<th>Number of SSSI qualifying feature</th>
<th>% assessed features unfavourable[198]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowland raised bog</td>
<td>1,994</td>
<td>23</td>
<td>81</td>
</tr>
<tr>
<td>Fen (topogenous)</td>
<td>812</td>
<td>72</td>
<td>59</td>
</tr>
<tr>
<td>Flush & spring (soliogenous)</td>
<td>133</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Swamp</td>
<td>595</td>
<td>57</td>
<td>51</td>
</tr>
</tbody>
</table>

Trend:

Table 3.11 Status of Habitats Directive Annex I Freshwater Habitats in Wales[194] Key: \rightarrow = stable; \downarrow = decreasing; \uparrow = increasing; - = no information; greyed arrows = low. S = short-term trend; L = long-term trend.

<table>
<thead>
<tr>
<th>Habitats</th>
<th>Range Trend</th>
<th>Area Trend</th>
<th>Structure & Function</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligotrophic to mesotrophic lakes with Littorelletea</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
<td>\rightarrow</td>
</tr>
</tbody>
</table>
Table 3.12 Status of Habitats Directive Annex I Wetlands Habitats in Wales

<table>
<thead>
<tr>
<th>Habitat name</th>
<th>Surface area (ha), Wales</th>
<th>Proportion (%) of UK Surface Area in Wales</th>
<th>Short-term trend direction (area) (Wales)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active raised bog</td>
<td>1,645</td>
<td>10.6</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>Degraded raised bog</td>
<td>751</td>
<td>3.6</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>Transition mire</td>
<td>336</td>
<td>-</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Rhynchosporion</td>
<td>17</td>
<td>-</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Alkaline fens</td>
<td>120</td>
<td>3.6</td>
<td>↓</td>
<td></td>
</tr>
<tr>
<td>Calcareous fen with Cladium mariscus and species of the Caricion davallianae</td>
<td>63</td>
<td>16.6</td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>Petrifying springs</td>
<td>5.6</td>
<td>-</td>
<td>↓</td>
<td></td>
</tr>
</tbody>
</table>

Examples are rare and threatened by eutrophication and are still declining.

Mainly within protected sites. The main issues are nutrient-related pressures and invasive species.

The main issues are nutrient-related pressures, invasive species and recreation.

This habitat type has mainly been affected by acidification and, less often, forestry.

Pant-y-Llyn in Carmarthenshire is the only example of this rare habitat in Britain.

A widespread habitat type in Wales. There is some evidence of recovery from long-term degradation during the 20th century.

KEY EVIDENCE SOURCES

- River Basin Management Plans
- The case for change - current and future water availability
- LIFE Natura 2000 programme
- Water Strategy for Wales
<table>
<thead>
<tr>
<th>KEY EVIDENCE SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Resources Strategy for Wales201</td>
</tr>
<tr>
<td>Climate Change Risk Assessment for Wales196</td>
</tr>
<tr>
<td>UK Climate Projections 2009 (UKCP09)202</td>
</tr>
</tbody>
</table>
3.11. Urban Environments

(See section 3.11 of the Technical Annex for Chapter 3 for more information)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>• 2.5 million people – 81% of Wales’ population - live in towns and cities(^203) [H].</td>
</tr>
<tr>
<td>• Towns and cities cover less than 10% of the land area of Wales(^204) [H].</td>
</tr>
<tr>
<td>• Well-managed, high quality parks and green spaces are critical elements of accessible natural green space(^205) (Figure 3.29) [H]. 110 public green spaces won Green Flag Awards(^206) in 2015/16 [H].</td>
</tr>
<tr>
<td>• In 2013, open space provided 22% and private gardens 35% of the total land area within Wales’ towns and cities(^207) (Figure 3.30). [M]</td>
</tr>
</tbody>
</table>

| **Condition:** |
| • In 2013, urban tree canopy in Wales was 16.4% - mid range in world rankings - and covered 14,145 ha (Figure 3.31). High cover in the South Wales Valley towns contrasts with low levels of canopy in coastal communities\(^207\). [M] |
| • 160 out of our 220 towns (73%) showed an overall decline in canopy cover between 2009 and 2013 with the loss of 7,000 large amenity trees between 2006 and 2013\(^207\). Tree cover in deprived areas tends to be lower and relatively less rich in amenity trees (Figure 3.32). [M] |
| • Urban noise pollution (Figure 3.33) is one of the most common causes of nuisance complaints in Wales and contributes to the environmental burden of ill-health\(^208\) [M]. |

| **Trend:** |
| • The number of people living in our cities is likely to increase significantly over the next 20 years – Cardiff, Wrexham, Newport and Swansea will be particularly affected\(^209\) [M]. |
| • The expansion of our towns, home improvements and the trend of paving over our gardens has removed large areas of land and thereby its ability to soak up rain, and provide a greenspace and a home for wildlife\(^210\) [H]. |
| • Urban surfaces heat up quickly making our towns up to 3°C degrees warmer than the surrounding countryside\(^211\) [H]. |
| • The rate of habitat creation on brownfield land has decreased since the closure of coal mines, the demolition of derelict metal works, the increased re-profiling and stabilisation of coal tips and house building\(^212\) [M]. |

| **Evidence gaps:** |
| • Limited up-to-date information on the quantity and quality of green infrastructure assets. |
Figure 3.29 Hectares (ha) of accessible natural greenspace per 1,000 population by local authority (ha), July 2012\(^2\). [M]

Figure 3.30 Distribution of land use classes across Wales’ urban areas (2013)\(^2\). [M]
Figure 3.31 Distribution of tree canopy cover across Wales’ urban land use classes207. [M]

Figure 3.32 Cardiff ward by ward (Lower Super Output Area, LSOA) tree canopy cover distribution – Communities First Cluster Areas (most deprived areas in Cardiff) highlighted207. [M]
Figure 3.33 Noise map for major roads, major railways and roads, railways and industry in agglomerations, 2012. [M]

KEY EVIDENCE SOURCES

- Welsh Government Local Authority Population Projections for Wales
- Tree Cover in Wales’ Towns and Cities study summary (NRW, 2014)
- The reclamation of former coal mines and steelworks book (Richards et al 1993)
- Wales Noise Action Plan
- Green Infrastructure’s contribution to economic growth (review by Sheffield Hallam University)
3.12. Coastal margins

(See section 3.12 of the Technical Annex for Chapter 3 for more information)

KEY MESSAGES

Extent:
- The coastal margins of Wales are primarily made up of sand dunes, saltmarsh and sea cliffs. Vegetated shingle and coastal lagoons make up a far smaller proportion of this broad habitat type\(^{218}\) (Table 3.13) [H].

Condition:
- Four of the eleven coastal SAC features were reported as wholly unfavourable in 2013\(^{218}\) (Figure 3.34) [H]. Whilst the sand dunes, coastal grassland and heath SSSI features are generally unfavourable, the hard vertical sea cliffs SSSI features are generally favourable\(^{219}\) [L].
- The habitats of the coastal margin provide some unique ecosystem services; for example, they play an important role in contributing to flood protection over much of the Welsh coast, either acting as a barrier or by wave attenuation\(^{220}\) [H].

Trend:
- Coastal habitats have declined in extent and quality since 1945 mainly due to habitat change\(^{220}\) [M].
- The majority of the Annex I habitats which make up the coastal margins are declining in range and extent in the short term\(^{218}\) [H].
- The CCRA17 Evidence Report\(^{221}\) has identified risks to habitats and heritage in the coastal zone from sea-level rise and the loss of natural flood protection. A combination of the effects of climate change on hydrological processes and the proposed management of our coasts set out in Shoreline Management Plans is predicted to lead to a decline in extent of coastal margin habitats\(^{222, 223}\) [H].

Evidence gaps:
- There is limited understanding of how vulnerable and resilient our coastal margins are to climate change factors, such as increased storminess, changing rainfall and temperature. We do not have much knowledge of how coastal margin habitats recover after storm events, which prevents us from making an evidence-based prioritisation of climate change adaptation measures.
- An understanding of the impact of coastal defences on adjacent coastal margin habitats and the value of coastal margin habitat in providing / contributing to soft sea defences, including system thresholds which govern that role.
- There is limited understanding of the condition and long-term trends in range and extent of coastal margin habitats, particularly outside of protected sites.

Table 3.13 Short and long term trends in range and extent of Annex I coastal margin habitats in Wales. All information from 2013 Article 17 reporting\(^{218}\). Key: → = stable; ↓ = decreasing; ↑ = increasing; - = no information. [H]. * Vegetated Sea Cliffs of the Atlantic to Baltic Coasts
are composed of the following habitats; Coastal grassland, Coastal heath and Vertical sea cliffs.¹ Short term trend = in the last 12 years. ² Long term trend = in the last 24 years.

<table>
<thead>
<tr>
<th>Habitats Directive Annex I habitat</th>
<th>Surface area of habitat (ha)</th>
<th>Proportion (%) of UK Surface Area in Wales</th>
<th>Short term trend¹</th>
<th>Long term trend²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coastal lagoons</td>
<td>83</td>
<td>1.7</td>
<td>→</td>
<td>Unknown</td>
</tr>
<tr>
<td>Salicornia and other annuals colonising mud and sand</td>
<td>211</td>
<td>10.1</td>
<td>↓</td>
<td>Unknown</td>
</tr>
<tr>
<td>Atlantic salt meadows (Glauco-Puccinellietalia maritima)</td>
<td>7,128</td>
<td>23.4</td>
<td>↓</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mediterranean and thermo-Atlantic halophilous scrubs</td>
<td>7</td>
<td>6.3</td>
<td>Unknown</td>
<td>Unknown</td>
</tr>
<tr>
<td>* Vegetated sea cliffs of the Atlantic and Baltic coasts</td>
<td>3,838</td>
<td>17.3</td>
<td>↓</td>
<td>Unknown</td>
</tr>
<tr>
<td>Annual vegetation of drift lines</td>
<td>16</td>
<td>8.1</td>
<td>↓</td>
<td>Unknown</td>
</tr>
<tr>
<td>Embryonic shifting dunes</td>
<td>100</td>
<td>33.9</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Shifting dunes along the shoreline with Ammophila arenaria (white dunes)</td>
<td>480</td>
<td>22</td>
<td>↓</td>
<td>Unknown</td>
</tr>
<tr>
<td>Fixed dunes with herbaceous vegetation (grey dunes)</td>
<td>2,700</td>
<td>12.1</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Humid dune slacks</td>
<td>390</td>
<td>21.7</td>
<td>↓</td>
<td>↓</td>
</tr>
<tr>
<td>Dunes with Salix repens ssp. argentea (Salicion arenariae)</td>
<td>229</td>
<td>35.8</td>
<td>↑</td>
<td>Unknown</td>
</tr>
<tr>
<td>Atlantic decalcified fixed dunes</td>
<td>40</td>
<td>4.4</td>
<td>↓</td>
<td>Unknown</td>
</tr>
<tr>
<td>Perennial vegetation of stony banks</td>
<td>93</td>
<td>1.7</td>
<td>→</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
Figure 3.34. Annex I SAC feature condition (% of total area ha) derived from Article 17 reporting218. Total hectares of each habitat in assessment shown in brackets. [H]

KEY EVIDENCE SOURCES

- JNCC Article 17 reporting 2006 and 2013218
- CCW’s Rapid Review of SSSI Features219
- UK National Ecosystem Assessment220
- Futurecoast: Future coastal evolution around England and Wales. A report to DEFRA222
- Shoreline Management Plans223, 224, 225, 226
3.13. Marine

(See section 3.13 of the Technical Annex for Chapter 3 for more information)

The habitats of the marine environment are reported here under the following broad categories:

- Coastal and marine waters: the waters along our coast and in the wider marine environment to 12 nautical miles.
- Intertidal: the area of shore between the low water mark and high water mark, excluding saltmarsh.
- Subtidal: the area of the sea bed that is always covered by water (i.e. below low tide). For the purposes of SoNaRR this extends 12 nautical miles out to sea.

Marine (in general)

<table>
<thead>
<tr>
<th>KEY MESSAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent:</td>
</tr>
<tr>
<td>- The Welsh marine area extends out to 12 nautical miles, covering just under 15,000 km² or 41% of the territory of Wales²²⁷ [H].</td>
</tr>
<tr>
<td>- 35% of Welsh marine waters are designated as marine protected areas (Special Areas of Conservations, Special Protection Areas, Sites of Special Scientific Interest with intertidal features, Marine Conservation Zones and Ramsar sites)²²⁷ [H].</td>
</tr>
<tr>
<td>Condition:</td>
</tr>
<tr>
<td>- The marine environment remains highly diverse²²⁷. There have been improvements in water quality in recent years.²²⁸, ²²⁹, ²³⁰ [H].</td>
</tr>
<tr>
<td>- Evidence suggests marine habitats are in variable condition²³¹, ²³² but they are able to support healthy populations of many species of seabirds and marine mammals²³³, ²³⁴ [H].</td>
</tr>
<tr>
<td>- Wales has contributed to the good progress made towards achieving Good Environmental Status for UK waters by 2020, as defined in the UK Marine Strategy Part One²³⁵, ²³⁶.</td>
</tr>
<tr>
<td>Trend:</td>
</tr>
<tr>
<td>- A number of further marine SACs and SPAs have been proposed in Welsh waters and, if designated, these additional sites would increase the combined coverage of marine protected areas in Welsh waters²³⁷ [H].</td>
</tr>
<tr>
<td>- Historically, the marine environment around Wales has suffered significant habitat loss, with key examples being coastal habitat (particularly saltmarsh) and subtidal native oyster beds. A key issue is to understand opportunities to restore or facilitate the recovery of these ecosystems as well as to identify the wider social and economic benefits that such projects could provide for Wales.²²⁷, ²³⁸, ²³⁹ [H].</td>
</tr>
<tr>
<td>- The CCRA17 Evidence Report²⁴⁰ has identified risks to and opportunities for marine species, fisheries and marine heritage from ocean acidification and higher water temperatures [H].</td>
</tr>
</tbody>
</table>

Evidence Gap:
There is limited understanding of ecosystem health, although the Monitoring Programme established through the UK Marine Strategy Part Two will improve our understanding.

Coastal and marine waters

KEY MESSAGES

Extent:
- The Water Framework Directive covers the entire Welsh coastline out to 1 nautical mile with 32 estuarine and 23 coastal water bodies.[H]

Condition:
- Coastal and marine water quality is fair with 29% of our estuarine and coastal waters in good or better ecological status.[H]
- Failures to achieve Good Ecological Status are primarily due to elevated concentrations of nutrients derived from diffuse and point sources.[H]
- Only 3 of 22 Shellfish Waters met guideline quality standards in 2014 due to a complex interrelationship of factors. However, there have been improvements in our most economically important shellfish waters.[H]
- Marine litter is an issue because of effects on biodiversity, commercial and recreational activities and the visual amenity of the coastal and marine environment.[H]

Trend:
- There have been improvements in water quality in recent years.[H]
- The number of designated bathing waters has increased from 50 in 1990 to 102 in 2015. Over this period, their quality has improved due to significant investment to improve discharges from water company assets and to address diffuse pollution in and around bathing waters (Figure 3.36). In 2015, 82 bathing waters were excellent, 16 good and 4 sufficient (Figure 3.37). This was 100% compliance with the directive.[H]

Evidence Gaps:
- Understanding the dynamic of bacterial loading in water and shellfish bacterial flesh quality;
- Improved understanding of the dynamics between nutrients and accelerated algae growth in dynamic estuaries and coastal waters;
- Understanding in-combination and long-term impacts of chemicals on ecological status.
Figure 3.35 Water Framework Directive classifications for estuarine and coastal elements, 2015228. [H]

Figure 3.36 Percentage of designated bathing waters complying with the original Bathing Water Directive 1990 – 2014228. [H]
Figure 3.37 Bathing Water Directive classification 2015 (revised Directive)228. [H]

<table>
<thead>
<tr>
<th>KEY EVIDENCE SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>River Basin Management Plans242</td>
</tr>
<tr>
<td>Wales’ Marine Evidence Report227</td>
</tr>
<tr>
<td>Wales Marine Planning Portal243</td>
</tr>
<tr>
<td>UK Marine Strategy Part One: Initial Assessment and Good Environmental Status235</td>
</tr>
<tr>
<td>Water Framework Directive reporting228</td>
</tr>
<tr>
<td>Wales Bathing Water Data Explorer244</td>
</tr>
</tbody>
</table>
Intertidal

KEY MESSAGES

Extent:
- The Welsh coastline is approximately 2,740 km in length\(^{245}\), covers around 56,856 ha of intertidal habitat\(^{246}\) and includes sheltered and exposed rocky shores, wide mudflats, and sandy macrotidal estuaries (Figure 3.38) [H].
- 75% of the intertidal habitat of Wales is designated as a Site of Special Scientific Interest (SSSI)\(^{246}\) [H].
- Biogenic reefs are relatively common in Wales and honeycomb reefs have recently re-established in north Wales after a long absence\(^{247, 248}\) [H].

Condition:
- There are indications of improvement in the condition and extent of some smaller intertidal features. All seven estuarine and coastal water bodies with intertidal seagrass beds were in high or good status in 2015 (Water Framework Directive)\(^{228}\) [H].

Trend:
- Broader scale intertidal habitat features have shown losses in recent years. Extent of estuaries has been stable over the short term (2001 – 2012), but losses have been recorded over the longer term (1989 – 2012). Mudflats and sandflats show gradual decline in extent over the short and long term\(^{231}\) [H]. Intertidal seagrass beds (*Zostera noltii*) have increased in extent\(^{249, 250, 251}\) [H].
- Sea-level rise and increased storm frequency are likely to have a significant coastal squeeze impact on intertidal sand, mud and habitats particularly around estuaries and along sections of defended coast\(^{252}\) [H].
- Introduction and establishment of invasive non-native species is expected to increase in future due to climate change\(^{253, 254, 255}\) [H].

Evidence Gaps:
- There are gaps in our understanding of the condition of intertidal habitats particularly outside of protected sites and in terms of how condition has changed over time. The gaps in our understanding are most prevalent outside of protected sites.
Figure 3.38 Marine (intertidal and subtidal) habitats listed under Annex I of the Habitats Directive. The 12 nautical mile limit of Welsh territorial waters is shown. [L-H]
KEY EVIDENCE SOURCES

- Wales’ Marine Evidence Report227
- When the tide goes out: The biodiversity and conservation of the shores of Wales - results from a 10 year intertidal survey of Wales246
- Charting Progress 2: The State of UK Seas256
- Wales Marine Planning Portal243
- UK Marine Strategy Part One: Initial Assessment and Good Environmental Status235
- River Basin Management Plans241
- UK National Ecosystem Assessment245
Subtidal

KEY MESSAGES

Extent:
- The extensive marine subtidal area is an important resource, covering 41% of the territory of Wales[^227] [H].
- Current estimates are that 75% of the Welsh seabed to 12 nautical miles comprises sands and gravels, 5% is mixed sediments, 2% mud and 10% rock[^227, 257] (Figure 3.38, Figure 3.39) [L].
- There are subtidal reefs to the north and west of Anglesey, around the Llŷn Peninsula and off the Pembrokeshire Coast[^231] (Figure 3.38, Figure 3.39) [H].
- There are highly productive kelp forests (brown algae) along the majority of the Welsh coastline[^258]; subtidal biogenic horse mussel (*Modiolus modiolus*) and Ross worm (*Sabellaria spinulosa*) reefs; and seagrass meadows known to be important for juvenile fish[^259, 260] (Figure 3.38, Figure 3.39) [H].

Condition:
- Whilst there is a rich diversity of subtidal habitats, available evidence for their extent, condition and trends paint a mixed picture[^227, 231, 232] [L-H].
- Important and sensitive habitats such as Maerl, *Modiolus modiolus* (horse mussel) beds, tidal rapids and sublittoral sands and gravels were all reported as declining in condition in 2008[^227] [L-H].
- The majority of water bodies achieved high or good status for subtidal Water Framework Directive elements in 2015. 70% of the water bodies assessed achieved good or high for benthic invertebrates; 75% achieved good or high for phytoplankton; 100% achieved good or high for estuarine fish[^228] [H].

Trend:
- The extent of both sandbanks and reefs was found to be declining over the short (2001-2012) and long (1989-2012) term in Wales[^261] [H].
- Large shallow inlets and bays were stable, with no significant habitat losses in extent over the short term[^261] [H].
- The *Zostera marina* seagrass bed within the Skomer Marine Conservation Zone appears to have increased in extent between 1997 and 2014[^262] [H].

Evidence Gap:
- There are gaps in our understanding of the extent, condition and trends of subtidal habitats, particularly in terms of how the extent and distribution of habitats has changed over time and outside of protected sites, where we have least knowledge.
Figure 3.39 Broadscale subtidal habitats. The 12 nautical mile limit of Welsh territorial waters is shown. [L-H]
<table>
<thead>
<tr>
<th>KEY EVIDENCE SOURCES</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wales’ Marine Evidence Report<sup>227</sup></td>
</tr>
<tr>
<td>• Charting Progress 2: The State of UK Seas<sup>256</sup></td>
</tr>
<tr>
<td>• Wales Marine Planning Portal<sup>243</sup></td>
</tr>
<tr>
<td>• UK Marine Strategy Part One: Initial Assessment and Good Environmental Status<sup>235</sup></td>
</tr>
<tr>
<td>• River Basin Management Plans<sup>242</sup></td>
</tr>
<tr>
<td>• UK National Ecosystem Assessment<sup>245</sup></td>
</tr>
</tbody>
</table>
PART C – PRESENTING INTEGRATED EVIDENCE AROUND PLACE

(See Part C of the Technical Annex for Chapter 3 for more information)

3.14. Landscape information in Wales

Landslapes are the culmination of both natural and human influences on our natural resources and ecosystems. Welsh landscapes reflect the extent and condition of a range of natural resources and ecosystems against the complexity of human influences and land use decisions.

Diverse landscapes where ecosystems are maintained in good condition are often (but not always) a clear indication that sustainable land management practice is being undertaken; these more resilient landscapes tend to provide a broader range of ecosystem services with social and economic benefit.

We are fortunate in Wales to have excellent, readily-available landscape information which captures and records this diversity in landscape character and quality at a local, regional and national scale. The most detailed landscape baseline in Wales is LANDMAP264, our national programme of landscape assessment [H]. LANDMAP describes the physical, geological, ecological, visual, historic and cultural landscape. By capturing multi-dimensional landscape information, it ensures that all aspects of the landscape can be taken into account. LANDMAP information is also the starting point for Landscape Character Assessments (LCAs) in Wales, which provide a simple representation of the nature and extent of places possible at different spatial scales [M]. These are normally prepared in connection with place-based initiatives about management, development planning policy or design. LCAs have been identified for Wales at both a local planning authority level and at a national level with 48 National LCAs identifying regional landscapes [H]. They offer overall landscape summaries linked to the 5 LANDMAP layers, key characteristics, and forces for change. Some Local Authorities have identified areas of high landscape importance, often linked to LCA’s.

Seascape information complements our landscape information and together the two types of information provide an understanding of the cultural benefits to be had from the marine environment. The 29 national Marine Character Areas (MCAs)265 [H], the 50 Regional Seascapes266 [H] and the local Seascape Character Assessments (SCA) [H] of Pembrokeshire267, Snowdonia268 and Ynys Mon269 provide unrivalled seascape information in Wales.

Other sources of evidence include the Register of Landscapes of Historic Interest in Wales and National Park and Area of Outstanding Natural Beauty (AONB) Management Plans [H].

Collectively, there is a wealth of information to hand all of which is accessible and available to use, either as web based maps and surveys or as reports. Using this information can aid our understanding of natural resources and ecosystems at a variety of scales. This is an important communication tool because people relate to
landscapes as places to live, work and enjoy and as areas which contribute to a sense of place, identity, well-being and quality of life as well as delivering multiple benefits.

A key challenge for sustainable management is to retain the distinctiveness of our places and historic landscapes, as recognised in the Welsh Government Natural Resources Policy Statement. This recognises that the natural and historic components of landscape are important to both place and the cultural value of landscape (see Chapter 5 for further information on benefits to well-being).

National landscape change to 2015270, 271, 272 has been small overall, but some changes have been substantial locally [H]. The key contributors to landscape change in the built environment include: the expansion of settlements, commercial and industrial developments, quarries and road improvements, onshore wind-farms, turbines and large recreational related developments. In the rural environment examples include: the felling of conifers and replanting with broadleaves, woodland expansion and changing bracken cover.

Climate change is likely to have significant impacts on landscape character, local distinctiveness and quality, directly through changing land cover (migrating habitat and species ranges) and indirectly by influencing land use decisions273, 274 [H]. Landscape changes may also be evident from mitigation measures, such as renewable energy generation, water resource management and adaptation through the planned expansion of woodland.

<table>
<thead>
<tr>
<th>KEY MESSAGES (Landscape)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 25% of Wales is designated as either National Park or Area of Outstanding Natural Beauty275 [H].</td>
</tr>
<tr>
<td>• Over 50% of Wales is nationally valued for its scenic quality and character, many Welsh landscapes are iconic with a clear sense of place and recognisable identity276 [H].</td>
</tr>
<tr>
<td>• 55% of Wales was identified as tranquil in 2009 (11,600 km2), but 1,500 km2 of tranquil landscapes were lost in the preceding 12 years277 [M].</td>
</tr>
<tr>
<td>• 46% of the total land area was identified as having a negligible level of night time light pollution in 2015276. However, where we have substantial levels of night time light pollution (501 km2) this finding contributes to our evaluation of the landscape as low value [H].</td>
</tr>
<tr>
<td>• Wales is predominantly a rural landscape: 60% of the landscape is defined as Field Pattern/Mosaic whilst 20% is categorised as Open Land276 [H].</td>
</tr>
<tr>
<td>• Quality-assured landscape evidence tracks state and trend, identifying changes in landscape quality and diversity. Key factors determining landscape change between 2003 and 2015270, 271, 272 are, in particular, the expansion of settlements; commercial and industrial development, including the expansion of quarries; road improvements; onshore wind-farms and turbines; and recreational related developments [H].</td>
</tr>
<tr>
<td>• Key changes in the natural environment observed through landscape change270, 271, 272 include: replacement of conifers with broad-leaved trees, woodland expansion, changes in bracken cover, reduced habitat diversity</td>
</tr>
</tbody>
</table>
in places, reduced bog, but also evident improvements in upland vegetation [H].

- The CCRA17 Evidence Report273 and other evidence274 has identified risks to landscapes from pests, pathogens and invasive species and from changes in frequency and/or magnitude of extreme weather and wildfire events. More generally, there are risks and opportunities from changes in landscape character [H].

3.15. Assessing extent, condition and trends at an area scale

SoNaRR provides the extent, condition and trends of natural resources and ecosystems at a national scale - but it recognises that those trends are not necessarily uniform in every part of Wales or across all aspects of ecosystems. A key principle of the Environment Act is to consider the appropriate spatial scale for action – this is reflected in the facilitation of the National Policy through Area Statements. This will need to be done by following a very similar approach to the one employed for SoNaRR: presenting evidence in relation to state, resilience and benefits, and identifying the specific variations against national condition and trend data.

As a precursor to Area Statements, NRW ran three area natural resource management trials – in the Rhondda and Tawe in South Wales, and Dyfi in Mid Wales.

The purpose of the trials was to:

- Investigate what sustainable management of natural resources means within a local context;
- Consider how we apply our new duties under the Environment Act and the Well-being of Future Generations Act;
- Inform changes to NRW's ways of working, in line with the new legislation.

The trials were a particular opportunity to explore how NRW applies the principles of sustainable management in practice.

Each of the trials took a different approach to assessing extent, condition and trends of the natural resources and ecosystems in those areas. The Dyfi trial attempted to capture as much spatial data as possible to map both natural resources and ecosystems, and the benefits they provide. The Tawe used a mix of both formal data sets and expert opinion to inform the development of an evidence pack that could be used in discussions with stakeholders, then be added to and refined. This focused on seeking out opportunities for better management of natural resources. The Rhondda trial began by meeting and working with a wide range of partners and people in the Rhondda. Open dialogue was used to encourage discussions, knowledge sharing and creative ideas, and enabled us to build our evidence base in perhaps a less traditional, but equally fruitful way.

Each of these trials has produced results, and the knowledge and experience gained from the different approaches is continually being evaluated. When it comes to
preparing the first statutory Area Statements, we will need to adopt some common standards for the way we collate and present evidence on the state and resilience of natural resources and ecosystems and the benefits derived from them. However, one of the key lessons from the trials is that the approach taken needs to reflect the characteristics of, and evidence relevant to, a particular place. We do not wish to make this an overly prescriptive process, particularly if there are local evidence gaps, or if conversations with local people and landowners give a better perspective on what is really happening. We need to ensure those thoughts and views are captured to add resonance and a more in-depth understanding of a place.
References for Chapter 3

(“Accessed” refers to the date the link was last accessed)

3.1 Animals, plants and other organisms

6 NRW. 2010. NRW features database.

3.2 Air Quality

3.3 Water Resources and Hydrological Processes

54 Atkins. 2010. SMP 19 Anchor Head to Lavernock Point (Severn Estuary) Shoreline Management Plan (SMP) Review.

55 Halcrow. Group. 2012. SMP 20 Lavernock Point to St Ann’s Head (South Wales) Shoreline Management Plan SMP2. Available from:
3.4 Soils

71 NRW. 2016. The state of contaminated land in Wales. Cardiff: Natural Resources Wales.

3.5 Geodiversity, Geological Features and Processes (including Minerals)

83 NRW. 2016. Geological SSSI boundaries, Easimap, Natural Resources Wales database.

84 NRW. 2005-present. Various individual geological site reports. Internal data sources. Natural Resources Wales.

89 NRW. 2016. Corporate datasets with geological sites boundary details. Natural Resources Wales.

Part B – Welsh Ecosystems

3.6 Mountains, Moorlands and Heaths

3.7 Semi-natural Grasslands

3.8 Enclosed Farmland

3.9 Woodland

3.10 Freshwater

189 NRW. 2016. Nitrate Vulnerable Zone (NVZ) GIS datasets. Natural Resources Wales internal datasets.
3.11 Urban Environments

3.12 Coastal Margins

Atkins. 2010. SMP 19 Anchor Head to Lavernock Point (Severn Estuary) Shoreline Management Plan (SMP) Review.

3.13 Marine

Part C

3.14 Landscape information in Wales

274 Historic Environment Group. 2013: Climate change and the historic environment of Wales: A summary of potential impacts